HORE MOVERNENT	VIVEKANAN	NDHA COLLEGE OF A (AUTON Elayampalayam, Ti	LEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) npalayam, Tiruchengode-637 205.									
Programme	B.Sc	Programme Code			U	CH	Regu	lations	2021-2022			
Department	Cl	nemistry				Semester			1			
Course Code	Сог	irse Name	Pe per	erioc We	ls æk	Credit		Maxin	aximum Marks			
			L	Т	Р	С	CA	ESE	3	Total		
21U1CHC01	Core pa	per - I:	6		0	6	25	75		100		
	General Ch	emistry –I	1			1 • • 1	<u> </u>					
Course Objectives	 To learn abou To learn abou To critique er 	 To learn about the fundamentals of chemistry and principles of various topics. To learn about the outline of basic concepts of organic chemistry. To critique errors and titrimetry. 										
POs		PRO	GRA	MN	1E (OUTCOME	4					
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.											
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.											
PO 3	Capability to a arguments, clai	pply analytic thought ms, beliefs on the bas	to a b is of	oody emp	of l	knowledge; a al evidence.	analyse	and ev	alu	ate evidence,		
PO 4	Apply one's lea	arning to real life situa	ntions									
PO 5	Analyse and sy	nthesis data from a va	riety	of s	our	ces.						
PO 6	Establish hyporeport the result	thesis, predict cause ts of an experiment or	and- inve	effe stiga	ct re ation	elationships; 1.	ability	to pla	ın,	execute and		
PO 7	Ability to wor coordinated eff	k effectively and resource or the second sec	pectfi oup.	ully	wit	h diverse te	ams; fa	acilitate	cc	operative or		
PO 8	Ability to analy	vse, interpret and draw	v cone	clusi	ions	from quanti	tative/q	ualitati	ve	data.		
PO 9	Critical sensibi society.	lity to lived experience	ces, w	vith	self	awareness a	nd refle	exivity	of	both self and		
PO 10	Capability to u evaluate, and u	use ICT in a variety se a variety of relevant	of le t info	earn orma	ing tion	situations, on source.	lemons	trate al	oilit	ty to access,		
PO 11	Ability to work	independently, identi	fy ap	pro	priat	te resources i	required	l for a p	oroj	ject.		
PO 12	Possess knowle	edge of the values and	belie	efs o	f mı	ultiple cultur	es and	a globa	l pe	erspective.		
PO 13	Appreciating entruthful actions	nvironmental and sus in all aspects of work	tainał	oility	y iss	sues; and add	opting o	objectiv	ve, 1	unbiased and		
PO 14	Building a team	n who can help achiev	e the	visi	on,	motivating a	nd insp	iring te	am	members.		
PO 15	Ability to acquire knowledge and skills.											

COs	COURSE OUTCOME
CO 1	Students understand the various atom models, the periodic properties and electronic configurations of s p d and f block elements
CO 2	Students gain an insight into the concept of valency and predict the formulas of compounds, sketch Lewi's structure, identify situations where and appreciation of dative bonding is required to account for bonding in molecules and ions.
CO 3	Students analyze the basic concepts or organic chemistry while learning about reactions.
CO 4	Students apply the different chemical concepts to different gaseous system and real time problems.
CO 5	Students evaluate the magnitude of various possible errors in volumetric analysis.
Pre- requisites	Nil

					K	NOW	LEDG	E LEV	ELS						
	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
CO / PO / KL Mapping															
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos KLs									POs	5			Kl	Ls	
							PO	1			1	-			
CC)1		1						PO	2			3	5	
									PO	3		5			
							PO	4			2				
CO 2					3				PO	5			4		
									PO 6			4 2 6 4 2			
									PO	7			6)	
) 3		2					PO 8				4			
									PO	9			2		
C	٦ 4								PO 1	0		3			
	J4				4				PO 1	1		4 2 3 1 5 4			
									PO 1	2		2 3 1 5 4			
C	5				2			PO 13					4	-	
	,,			3				POI	4			2	2		
						00		. .	POI	5			1		
		(\mathbf{a}))/1 ;nd:	aataa th	o atmon	CU oth of	/ PO N	Lapping	g atnona	-)	1:	weals)			
		(3/2	2/1 mai	cates th	le stren	gui oi	correla		-strong	g, 2-mec	iiuiii, 1	-weak)			
COs		1				Pi	rogram	me Ou	tcome	(POs)		1			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	1	1	2	1	2	1	1	2	1	3	1	1	2	3
CO2	1	3	1	2	2	2	1	2	2	3	1	1	2	2	1
CO3	2	2	1	3	1	3	1	1	3	2	2	1	1	3	2
CO4	1	2	2	1	3	1	1	3	1	2	1	2	3	1	1
CO5	1	3	1	2	2	2	1	2	2	3	1	1	2	2	1

Course Assessment Methods

Direct

1. Continuous Assessment Test I, II & Model

2. Assignment
 3. End Semester Examinations

Indirect

Content of the Syllabus									
	Atomic& Electronic structure and Periodicity of Elements	Periods	12						
	Fundamental particles of matter – their composition – Comparison be	etween Rutherfor	d 's model						
Unit - I	of atom and Bohr 's Model-Outline of the Bohr-Sommerfeld model-	-its limitations -	de Broglie						
	theory-Heisenberg 's uncertainty principle- Concept and Shapes of o	orbital Difference	es between						
	orbit andorbital.Quantum numbers and their significance, Pauli s exclusion principle, Hund's								
	rule, Aufbau principle, Extra stability of half -filled and complete	ly filled orbital,	Electronic						
	division of elements into s n d and f blocks Periodic properties -	- Factors affectir	ng periodic						
	properties- and its variation along the periods and the groups.	i detoris directi	ig periodic						
	Chemical Bonding	Periods	12						
Unit - II	Ionic bond- Definition examples – Formation - Factors influenci	ng the formatio	n of ionic						
	bond- characteristics of ionic compounds- lattice energy and its of	determination us	ing Born-						
	Haber Cycle. Covalent bond- Definition, examples – Formation-factors influencing the								
	formation of covalent bond- characteristics of covalent compounds -partial ionic character in								
	covalent compounds - Polarizing power - Polrizability of ions - Fajan's rule -Molecular orbital								
	theory- Postulates - MO configuration of homo nuclear diatomic mod	lecules- H ₂ , He ₂ ,	F_2 , O_2 and						
	their ions -Hetero nuclear molecular orbital -BeF2, CO and NO -	- Formal Charge	e -VSEPR						
	theory- Postulates - explanation of shapes of simple covalent molecule	es and ions.Weal	c chemical						
	forces - van der Waals forces, ion-dipole forces, dipole-dipole in	teractions, induc	ed dipole						
	interactions, Instantaneous dipole-induced dipole interactions. Re	pulsive forces,	Hydrogen						
	bonding.	<u> </u>							
	Fundamentals of Organic Chemistry	Periods	12						
Unit - III	Concept of hybridization Structure of organic molecules based on sp	p^3 , sp ² and sp hyl	bridization						
	Covalent bond properties of organic molecules bond length, bond	angle, bond ene	rgy, bond						
	polarity, dipole moment. Physical Effects, Electronic Displace	tion Cleavage	ve Effect,						
	Homolysis and Heterolysis. Structure, shape and reactivity of ors	vanic molecules.	Aliphatic						
	nucleophilic substitution, aromatic electrophilic substitution reaction	ns: Reactive Inte	rmediates:						
	Carbocations, Carbanions and free radicals. Strength of organic acid	ds and bases: Co	omparative						
	study with emphasis on factors affecting pK values. Aromaticity: Ber	zenoids and Hüc	kel's rule.						

	The Gaseous state and the Liquid state	Periods	12					
	A) The Gaseous state							
	Postulates of kinetic theory of gases and its derivation -ideal gas equation, Boyle's law, Charles							
	law, Grahams law of gaseous diffusion and Daltons law of p	artial pressure.	Maxwells					
	distribution of molecular velocities, Root mean square, average an	d most probable	e velocity,					
	Collision diameter, collision frequency, collision number and mean	free path - Dev	viations of					
Unit - IV	real gases from ideal behavior Derivation of Vander Waals equation f	for real gases.						
	B) The Liquid state							
	Structure of liquids-Vapour pressure - Trouton's rule- Determination of Vapour pressure -							
	dynamic and static method -Effect of temperature on vapour pressure -Surface tension-Surface							
	energy surface active reagents - Viscosity-Effect of temperature on viscosity. Refractive index -							
	Specific refraction - Molar Refraction Optical activity. Liquid crystals The mesomorphic state -							
	classification of liquid crystal smectic-nematic and cholestric liquid crystals.							
	Error Analysis	Periods	12					
	Errors and its types Significant figure, Definitions of molarity, molality, normality and mole							
Unit - V	fraction. Titration - Back titration, Equivalence point indicator Stan	dard solution, P	rimary and					
	secondary standards - Types of titrations - Acid base and redox. Analysis of basic radicals -							
	Group separation and confirmatory tests for basic radicals.							
	Total Periods		60					

Text	Books
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry (33rd edition), Vishal publishing Co (2017)
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (47th edition), Vishal Publishing co., (2017)
3	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (22nd edition), New Delhi, S Chand & Co (2016)
Refer	rences
1	Morrison R.T. and Boyd R.N., Organic Chemistry (7th Edition), Pearson Education, India (2010)
2	Madan. R. D., Inorganic Chemistry (3rd edition), New Delhi, S. Chand and Co (2012)
3	Mukherji. S. M, Singh. S. P, Kapoor. R.P, Organic Chemistry volume I (4th edition) New age International(p) limited (1998)
E-Re	ferences
1	https//chem.libretexts.org/Core/InorganicChemistry/DescriptiveChemistry/Periodic Trends of Elemental_Properties/Periodic_Properties_of_the_Elements
2	unicorn.ps.uci.edu/M3LC/lectures/LectureWeek1.pdf

HONEN ENFONCEMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	B.Sc	Programme Code	UCH Regulations					ons	2021-2022	
Department	Cl	hemistry				Semester			1	
Course Code	Cou	irse Name	Pe per	Periods per Week			Maximum Marks			
			L	Т	Р	С	CA	ESE	E Total	
21U1CHA01	Allied Chemi (BIOCHEMIST	stry – I RY)	5		0	5	25	75	100	
Course Objectives	To impart know mechanism, To knowledge in f	To impart knowledge in formation of molecule from atoms and various organic reaction mechanism, To prepare students for a carrier in chemical industries and To acquire basic knowledge in fundamental aspects of practical chemistry.								
POs		PROGRAMME OUTCOME								
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.									
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.									
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.									
PO 4	Apply one's lea	arning to real life situa	ations			*				
PO 5	Analyse and sy	nthesise data from a v	variety	/ of	sou	rces.				
PO 6	Establish hypot report the resul	theses, predict cause-ats of an experiment or	and-e inve	ffect stiga	t relation	ationships; a' 1.	bility to p	lan, ex	xecute and	
PO 7	Ability to work coordinated eff	effectively and respe- ort on the part of a gro	ctfull oup.	y w	ith o	liverse teams	s; facilitat	e cooj	perative or	
PO 8	Ability to analy	vse, interpret and draw	conc	lusi	ons	from quantit	ative/qual	litativ	e data.	
PO 9	Critical sensibi and society.	lity to lived experience	ces, w	vith	self	awareness a	nd reflexi	vity o	f both self	
PO 10	Capability to u evaluate, and u	se ICT in a variety of se a variety of relevant	f lear it info	ning rma	g situ tion	uations, dem	onstrate a	bility	to access,	
PO 11	Ability to work	independently, identi	ify ap	prop	oriat	e resources r	equired for	or a pr	oject.	
PO 12	Possess knowl perspective.	edge of the values	and	bel	iefs	of multiple	e cultures	and	a global	
PO 13	Appreciating end and truthful act	nvironmental and sus ions in all aspects of v	tainał work.	oility	y iss	sues; and add	pting obj	ective	, unbiased	
PO 14	Building a tea members.	m who can help ac	hieve	the	e vi	sion, motiva	ting and	inspi	ring team	
PO 15	Ability to acqui	ire knowledge and ski	lls.							

COs	COURSE OUTCOME
CO 1	Students learn about bonding, anti-bonding, non-bonding and huckel rule of aromaticity
CO 2	Students acquire knowledge about the fundamental concepts of acid and base and to determine the hardness of water.
CO 3	Students able to apply the knowledge to prepare various concentration of solution.
CO 4	Students understand about the various antibiotics and drugs.
CO 5	Students evaluate the characteristics of soil, fertilizers and pesticides.
Pre-requisites	Nil

					KN	IOWL	EDGE	LEVE	LS						
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing															
		(2121		4 41	C	O/PO	/ KL N	/appin	g	.	1				
Cos KLs POs KLs															
	,								PO	1			3		
CO	1				2				PO	2			4		
									PO	3			6		
									PO 4	4			1		
CO	2				3				PO :	5			3		
									PO 6				2		
CO 3								PO 7				4			
				1				PO 8				5			
									PO	9		3			
COA				4				PO 10				1			
00			4						PO I	2			4		
									PO 1	3			6		
СО	5			5				PO 14				2			
				5				PO 15				4			
						CO/I	PO Ma	pping							
		(3/2/1	l indica	ates the	strengt	th of co	rrelati	on, 3-s	trong, 2	2-mediu	ım, 1-w	eak)			
00						Pr	ogram	me Ou	tcome	(POs)					
CUS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	2	2	3	1	1	2	2	1	3	1	3	1
CO2	3	2	1	1	3	2	2	1	3	1	2	2	1	2	2
CO3	1	1	1	3	1	2	1	1	1	3	1	2	1	2	1
CO4	2	3	1	1	2	1	1	2	2	1	3	1	1	1	3
CO5	1	2	2	1	1	1	2	3	1	1	2	1	2	1	2

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- Continuous rissessment rest
 Assignment
 End Semester Examinations

Indirect

Content of the Syllabus									
	Chemical bonding and Aromaticity	Periods	12						
Unit - I	Chemical Bonding – Definition, Types Ionic bond and cov formation and characteristics properties -bond order- magn NaCl, CaF ₂ . MO theory-bonding in H ₂ , O ₂ , N ₂ using MO the magnetic properties. Aromaticity -Huckels rule-types - Examp	alent bond, hyd netic properties neory -bonding bles.	drogen bond - . Structure of -bond order -						
	Acid and Base theory	Periods	12						
Unit - II	Arrhenius concept – Lowry- Bronsted theory -Lewis acid a Acid and base- Strength of an Acid and base. Principle and Cl Base -Soft Acid and base- HSAB. Acidity of water – Alkal types of hardness - methods RO and Zeolite process.	nd base theory assification of inity-PH -hard	- Conjugated Hard Acid and ness of water-						
	Volumetric analysis	Periods	12						
Unit - III	Law of Volumetric analysis-Definitions of molarity, molality, normality and mole fraction. Titration-Back titration-Equivalence point-Indicator - Standard solution - Primary and secondary standards- Types of titrations– Acid-base and redox.								
	Pharmaceutical Chemistry-I	Periods	12						
Unit - IV	Definition of the terms - Drug, Pharmacy, Pharmacophore, Pharmacodynamics and Pharmacopoeia. Antibiotics - Definition, classification - broad and narrow spectrum antibiotics - Penicillin, Chloramphenical and Erythromycin - structure and uses (structure elucidation not needed). Sulpha drugs -preparation of Sulphaguanine and Sulphathiazole. Mechanism and mode of action of sulpha drugs.								
	Agricultural Chemistry	Periods	12						
Unit - V	Soil types-red soil, black soil, alluvial soil, desert soil, red soil; role of humus: Manures and their importance. Chemical fertilizers- Natural and synthetic fertilizers: Classification of NPK fertilizer - Preparation of Urea, Ammonium sulphate, Triple super phosphate potassium nitrate; role of macronutrients and micronutrients. Pesticides- classification-insecticides, herbicides and fungicides- Structure of important pesticides: DDT, BHC.								
	Total Periods		60						

Text	Books
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry (33rd edition), Vishal publishing co., (2017).
2	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, New Delhi, S. Chand & Co., (2008).
3	Sharma B.K., Industrial chemistry including chemical engineering (16th), Meerut, Krishnaprakasam media., (2011).
4	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (22nd edition), New Delhi, S. Chand & Co., (2016).
5	Dr.R.D.Madan, Modern inorganic chemistry,(3rd edition), New Delhi,S. Chand & Co., (2014).
6	Jayashree Ghosh, Text Book of Pharmaceutical Chemistry, S. Chand, New Delhi, 1999.
7	S.Lakshmi .Pharmaceutical Chemistry, S.Chand & Sons, New Delhi, 2004
8	V.K. Ahluwalia and Madhu Chopra, —Medicinal Chemistryl, Ane Books, New Delhi, 2008
Refe	rences
1	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry , 47th edition, Vishal publishing co., 2017.
2	Ashutosh Kar, —Medicinal Chemistryl, Wiley Eastern Ltd., New Delhi, 1993
3	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, 50th edition, New Delhi, S. Chand &Co., 2011.
4	David William and Thomas Lemke, Foyes Principles of Medicinal Chemistry, BI Publishers.
E-Re	ferences
1	www.sparknotes.com/chemistry/bonding/molecularorbital/section1.rhtm
2	www.organic-chemistry.org/namedreactions/nucleophilic-substitution-sn1-sn2.shtm
3	www.soest.hawaii.edu/oceanography/courses/OCN633/Fall%202013/Titrimetry.pdf
4	chem.libretexts.org/

HOREN ENPOYEEMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	B.Sc	Programme Code	UCH		2	2018-2019				
Department	Che	mistry	Semester					1		
Course Code	Cours	Periods Week	per	Credit	N	Maximum Marks				
			L	P	C	CA	ESE	Total		
20U1CHA01	All (Nut	ied Chemistry – I rition and dietics)	5	0	5	25	75	100		
COURSE OBJECTIVES	To impart knowledge in formation of molecule from atoms and various organic reaction mechanism, To prepare students for a carrier in chemical industries and To acquire basic knowledge in fundamental aspects of practical chemistry.									
POs	PROGRAMME OUTCOME									
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.									
PO 2	Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,									
PO 3	Capability to apply claims, beliefs on t	analytic thought to a he basis of empirical	a body of l evidence;	cnow ident	ledge; analys ify relevant a	e and evaluat ssumptions o	e evidenc r implicat	e, arguments, ions etc.,		
PO 4	Capacity to extrapt of non-familiar pro- to real life situation	blate from what one h bblems, rather than re ns.	as learned	and	apply their co lum content k	ompetencies t nowledge; ar	o solve di id apply o	fferent kinds ones learning		
PO 5	Ability to evaluate arguments of other	e the reliability and r s; analyse and synthe	elevance sis data fro	of ev om a	vidence; ident variety of sou	tify logical fl urces; draw va	aws and alid concl	holes in the usions etc.,		
PO 6	A sense of inquestion of inquestion of the sense of inquestion of the synthesizing and formulate hypotheses of the sense o	uiry and capability articulating; Ability ses etc.,	for aski to recogn	ng r ise c	elevant/appro ause-and-effe	opriate quest ect relationsh	ions, pro ips, defii	bblematising, ne problems,		
PO 7	Ability to work effect on the part of and work efficient	fectively and respect of a group, and act tog by as a member of a te	fully with gether as a eam.	dive grou	erse teams; fa up or a team	in the interes	erative or ts of a co	coordinated mmon cause		
PO 8	Ability to analyse evaluate ideas, evi	, interpret and draw dence and experience	conclusions from an o	ons f	rom quantita minded and 1	tive/qualitati reasoned pers	ve data; pective.	and critically		
PO 9	Critical sensibility	to lived experiences,	with self a	ware	eness and refle	exivity of bot	h self and	society.		
PO 10	Capability to use I variety of relevant	CT in a variety of lea information sources;	rning situa and use ap	ation: prop	s,demonstrate riate software	ability to accept to an analysis	cess, valu of data.	ate, and use a		

PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students learn about bonding, anti bonding, non bonding and Interhalogen compounds.
CO 2	Students acquire knowledge about the fundamental concepts of acid and base and to determine the hardness of water.
CO 3	Students able to apply the knowledge to prepare various concentration of solution.
CO 4	Students understand about the various antibiotics and drugs.
CO 5	Students evaluate the characteristics of soil, fertilizers and pesticides.
Pre-requisites	

	Knowledge Levels								
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
	CO / PO / KL Manning								
(3/2/1 indicates the set of 1)	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	KLs	POs	KLs						
CO 1	5	PO 1	2						
		PO 2	1						
CO 2	2								
		PO 3	5						
CO 3	3	PO 4	5						
		PO 5	4						
CO 4	4	PO 6	6						
		PO 7	2						
CO 5	2								
		PO 8	4						
PSOs	KLs	PO 9	1						
		PO 10	3						
PSO 1	3								
		PO 11	3						
PSO 2	1	PO 12	2						
1002	+	PO 13	1						
DGO 2	1	PO 14	6						
PSO 3		PO 15	3						

CO / PO Mapping															
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1- weak)														
CO.	PROGRAMME OUTCOME (POs)														
COs	РО	PO2	РО	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PO1	PO1	PO15
	1		3							0	1	2	3	4	
CO1	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
		e (POs)						
COs	CO1	CO2	CO3	CO4	CO5			
PSO1	1	2	3	2	2			
PSO2	2	1	2	3	1			
PSO3	1	2	1	1	2			

Course Assessment Methods				
Direct				
1.Continuous Assessment Test I, II &Model				
2. Assignment				
3. End SemesterExaminations				
Indirect				
1. Course End Delivery				

	Content of the Syllabus						
	Chemical bonding	Periods	12				
Unit - I	Types of Bonding- Ionic Bond, covalent Bond and coordinate bond Molecular Orbital Theory-bonding, antibonding and nonbonding orbitals. M.O. diagrams of Hydrogen, Helium, Nitrogen, discussion of bond order and magnetic properties. Hydrides- classification and characteristics - preparation, properties and uses of Borazole, NaBH4 and LiAlH4.						
	Nuclear Chemistry	Periods	12				
Unit - II	Natural radioactivity-radioactive series including Neptulaw. Nuclear Binding energy, mass defect-Calculation Fusion-differences – Stellar energy. Nuclear reactors, A dating, rock dating.	nium series-C s. Nuclear F Applications o	Group displacement ission and Nuclear f radioistopes-C-14				

	Hybridisation, Electron displacement Effects & Stereoisomerism	Periods	12						
Unit - III	Covalent Bond-Orbital Overlap-Hybridisation – Geometry of Organic molecules-Methane, Ethylene and Acetylene Electron displacement Effects: Inductive, Resonance, Hyper conjugative & steric effects. Their effect on the properties of compounds. Stereoisomerism: Symmetry-elements of symmetry- cause of optical activity, Tartaric acid.								
	Aromatic compounds	Periods	12						
Unit - IV Aromatic compounds-Aromaticity-Huckel's rule. Electrophilic substitution in Benze Mechanism of Nitration, Halogenation-Alkylation, Acylation. Isolation, preparate properties and structure of Naphthalene Haworth's synthesis. Heterocyclic compound Preparation, properties and uses of Furan, Thiophene, Pyrrole									
	Solutions & Chromatography	Periods	12						
Unit - V Solutions: Liquid in liquid type-Raoult's law for ideal solutions. positive and negati deviation from Raoult's law-Reasons and examples, Fractional distillation and Azeotrop distillation. Chromatography: principle and application of column, paper and thin lay chromatography.									
	Total Periods 60								

Text Bo	ooks
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry (33rd edition), Vishal publishing co., (2017).
2	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, New Delhi, S. Chand & Co., (2008).
3	Sharma B.K., Industrial chemistry including chemical engineering (16th), Meerut, Krishnaprakasam media., (2011).
4	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (22nd edition), New Delhi, S. Chand & Co., (2016).
5	Dr.R.D.Madan, Modern inorganic chemistry,(3rd edition), New Delhi,S. Chand & Co., (2014).
Referen	ices
1	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry , 47th edition, Vishal publishing co., 2017.
2	Jayashree Ghosh, Text Book of Pharmaceutical Chemistry, S. Chand, New Delhi, 1999.
3	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry, 50th edition, New Delhi, S. Chand &Co., 2011.
E-Refe	rences
1	www.sparknotes.com/chemistry/bonding/molecularorbital/section1.rhtm

2	www.khanacademy.org/science/ap-chemistry
3	www.soest.hawaii.edu/oceanography/courses/OCN633/Fall%202013/Titrimetry.pdf
4	www.nhs.uk
5	chem.libretexts.org/

QP CODE-21U1CHC01 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY

B.Sc. DEGREE EXAMINATION

MODEL QUESTION- GENERAL CHEMISTRY - I

Time: 3 Hrs.

Max. Marks : 75

	•		Answ	er all questions $(20 \times 1 = 20)$		
1	Which	of the following has half-filled s	tability		К3	CO-1
	Α	Fe	В	Cr		
	С	Mn	D	Zn		
2	Which	of the following has the electron	ic confi	guration of $1s^2 2s^2 2p^6 3d^5 4s^1$	K 1	CO-1
	Α	Mn	В	Fe		
	C	Со	D	Cr		
3	Which	has the highest Ionisation potent	ial		K 1	CO-1
	Α	Na	В	Mg		
	C	Si	D	Р		
4	For n=	1, Write the values of l, m and s.			К3	CO-1
	Α	1,0,±1/2		$1,0,\pm 1/2$		
	С	0,1,±1/2		$0,1,\pm 1/2$		
5	What a	are the factors affecting the forma	tion of	ionic bond.	K1	CO-2
	Α	low ionization energy	В	high electron affinity		
	C	high lattice energy of ionic bond	D	all the above		
6	Which	one of the following is covalent	molecu	le?	K 1	CO-2
	Α	HF	В	H ₂		
	C	NaOH	D	NaCl		
7	Name	the molecule which has partial io	nic cha	racter.	K1	CO-2
	Α	H ₂	В	F ₂		
	C	HF	D	None of the above		
8	Identif	y the combination which greatly	distorts	regular geometry.	K 1	CO-2
	A	lp-lp repulsion	В	lp-bp repulsion		
	C	bp-bp repulsion	D	none of these		
9	Write	the general molecular formula of	falkane	S	K1	CO-3
	A	CnH2n+2	В	C _n H _{2n}		
	C	CnH2n-2	D	CnH2n-1		
10	Cataly	tic hydrogenation of	pı	oducing alkanes.	K1	CO-3
	Α	alkanes	В	alkadienes		

Section A wer all questions $(20 \times 1 - 20)$

r	T	•				
	C	alkenes	D	polyenes		
11	What i	s the first step of free radical sub	stitutic	on reaction	K1	CO-3
	Α	Propagation	В	Initiation		
	C	Termination	D	Copling		
12	Order of	of reactivity for the addition of hy	drogen	n halides in alkenes	K1	CO-3
	Α	HCl > HBr > HI	В	HI > HBr > HCl		
	C	HBr > HI > HCl	D	HI > HCl> HBr		
13	If the n	nean free path of a gas at 760 tor	r is λ. V	What will be its value	K3	CO-4
	at 5 atn	n pressure.	п	51		
	A	N3	В	<u>کہ</u>		
	C	5λ/760	D	λ^2		
14	The dia (λA/λB	meter of molecule B is half that () will be	of mole	cule A. The ratio of mean free path	К3	CO-4
	A	1/2	В	1/4		
	C	4	D	2		
15	Which	Of the following has high viscos	ity	1	K1	CO-4
	Α	Water	В	Benzene		
	C	Acetic acid	D	Chloroform		
16	Effect of	of Temperature On Vapour Press	ure		K1	CO-4
	Α	Increase	В	Decrease		
	C	No change	D	Increase and then decrease		
17	Write t	he significant figure of 0.00027			K3	CO-5
	Α	2.74x10 ⁻⁵	В	2.74x10 ⁻⁴		
	C	2.74x 10 ⁻²	D	2.74 x10 ⁻³		
18	Norma	l solutions can be prepared with			K1	CO-5
	A	molecular weight in grams	В	molecular weight in litre		
	C	equivalent weight in grams	D	atomic weight in grams		
19	Give a	n example for acid-base titration		-	K1	CO-5
	Α	HCl vs NaCl	В	NH ₄ OH vs NaOH		
	C	HCl vs NaOH	D	NH ₃ vs HCl		
20	What is	the colour of phenolphthalein in	1 basic	medium.	K1	CO-5
	A	Orange	B	Yellow		
	C	Pink	D	colourless		
			Sectio	on B		
		Answer	All qu	estions $(5 \times 5 = 25)$		ao 1
21	A	Explain the extra stability of ha	ult-fille	d and completely filled orbitals.	K2	CO-1
	а	Discuss the factors offecting Is			IZ 1	CO 1
	Б	Discuss the factors affecting to Draw MO diagram for E. mole	nisatio	n Energy.		CO-1
22	A		cuie	OD	κ∠	CU-2
		Eveloin Ecion's mile and its and	mligation			
	В	Explain rajan's rule and its ap	plicatio	0118.	K1	CO-2
23	A	Explain sp ³ & sp hybridisation	with e	xamples	K2	CO-3
				OR		

	В	Explain covalent bond properties of organic molecules.	K2	CO-3
24	А	Explain Davisson Germer experiment	K4	CO-4
		OR		
	В	Define surface energy. Explain the surface active reagents.	K1	CO-4
25	Α	Explain the types of errors	K1	CO-5
		OR		
	В	Write short note on complexometric titrations.	K2	CO-5
		Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Discuss Quantum numbers and their significance	K1	CO-1
27		Explain VSEPR theory and shapes of simple covalent molecules.	K4	CO-2
28		Explain in detail about inductive effect with examples.	K2	CO-3
29		Derive Vander waals equation for real gases.	K5	CO-4
30		Explain different type of titrations	K1	CO-5

TABLE OF SPECIFICATIONS (Question wise - No. of questions)

Outcome/ Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	4	1	2	-	-	-	7
II	5	1	-	1	-	-	7
III	4	3	-	-	-	-	7
IV	3	-	2	1	1	-	7
V	5	1	1	-	-	-	7
Total	2	6	5	2	1	-	35
	1						

TABLE OF SPECIFICATIONS (Marks wise – Total marks)

Outcome/ Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	17	5	2	-	-	-	24
II	9	5	-	10	-	-	24
III	4	20	-	-	-	-	24
IV	7	-	2	5	10	-	24
V	18	5	1	-	-	-	24
Total	55	35	5	15	10	-	120

QP CODE-21U1CHA01 VIVEKANANDHACOLLEGEOF ARTSANDSCIENCESCOLLEGEFORWOMEN

(Autonomous)

DEPARTMENTOFCHEMISTRY

B.Sc. DEGREE EXAMINATION - I

SEMESTER MODEL QUESTION

ALLIED CHEMISTRY - I

(BIOCHEMISTRY)

Time:3 Hrs.

Max.Marks:75

		Section -A Answer all questions	(20x	1=20)		
1	Wł	nich of the following is an example	for	onic bond.?	K1	CO-1
	Α	NaCl	В	Cl2		
	С	F2	D	KCl		
2	Na	Cl crystal has a	struc	ture.	K1	CO-1
	Α	Tetrahedral	В	Trigonal		
	С	Octahedral	D	hexagonal		
3	Co	valent bond involves		of electrons	K1	CO-1
	Α	Sharing	В	Transfering		
	C Both D		None			
4	Wł	hat is the bond order for O ₂ molecu	K3	CO-1		
	Α	1	В	2		
	С	0	D	3		
5	5 In the Bronsted-Lowry theory, a base is defined as				K2	CO-2
	Α	a proton donor	В	a hydroxide donor		
	С	an electron pair acceptor	D	a proton acceptor		
6	pН	of an alkaline water will be	••••		K2	CO-2
	Α	Zero	В	Low		
	С	High	D	None		
7	H	ardness in water is caused due to th	K3	CO-2		
	Α	undissolved salts of Ca, Mg	В	dissolved salts of K		
	С	dissolved salts of Ca, Mg	D	Undissolved CaCO ₃		
8	Re	verse Osmosis membranes are mad	le of	L	K2	CO-2
	Α	plastic	В	cotton		

	C	silk	D	polymer		
9	Giv	ve an example for primary standard	l sol	lution	K2	CO-3
	Α	Oxalic acid	B	NaOH		
	C	KMnO4	D	Na2S2O3		
10	Oxa	alic acid Vs NaOH is an example fo		titration	K2	CO-3
	Α	Acid base	B	Redox		
	С	Conductometric	D	Complexometric		
11	Number of Gram Equivalence per litre of solution is termed as				K2	CO-3
	Α	Mole fraction	B	Molality		
	С	Normality	D	Molarity		
	The	solution whose strength is known	as	solution	K4	CO-3
12	Α	Primary	B	Secondary		
	С	Both	D	none		
13	3 The structural unit which is responsible for activity of drug is termed as				K1	CO-4
	Α	Pharmacopore	В	Pharmacokinetics		
	С	Pharmacology	D	Pharma		
14		Is used to kill microorganism			K1	CO-4
	Α	Antibiotics	В	antipyrectic		
	C	analgesics	D	none		
15	Sul	pha drugs contains		group	K2	CO-4
	Α	Sulphonyl	В	amine		
	C	Acid	D	aldehyde		
16	The	e first isolated antibiotic is called			K2	CO-4
	Α	Penicillin	В	chlorophenicol		
	C	Tetraxylene	D	sulphathiazole		
17	Giv	e an example for nitrogenous fertil	izer		K2	CO-5
	Α	Urea	В	KCN		
	C	K_2SO_4	D	none		
18		Is a substance that is toxic t	o p	lants used to destroy unwanted vegetation.	K1	CO-5
	Α	Herbicides	В	Fungicides		
	C	Rodenticide	D	all		
19	Soi	l contain adequate amount of potas	h, li	me and phosphoric acid.	K2	CO-5

	Α	Alluvial soil	В	Black soil		
	C	red soil	D	all		
20	D	DTstandsfor	i		K3	CO-5
	A	Dichloro diphenyl trichloroethane	В	Dichloro diphenyl trichloromethane		
	C	Dichloro diphenylethane	D	Dichloromethyl trichloroethane		
		L	Sec	tionB		
21	A	Answer Explain the characteristics of joint	Anque nic bo	nd $(5x5=25)$	K4	CO-1
				OR		
	R	Drow the structure of NoCl and	К3	CO-1		
22	Δ	Explain Arrhenius concept of a	explai	h its nature of boliding.	K3	CO-1
	Л	Explain Armenius concept of a	112	0-2		
	B	Write short note on conjugate a	K4	CO-2		
22		Define the following terms i) M	V1			
23	A	Define the following terms i) Molarity in Normanty				0-3
	_			~~ ~		
	B	Define primary and secondary s	tandar	d substances with suitable examples.	K4	CO-3
24	A	Write the preparation for sulpha	iguani	ne and sulphathiazole	K3	CO-4
				OR		
	В	Give a brief account on antibiot	ics.		K2	CO-4
25	A	Describe the different types of s	soils		K1	CO-5
				OR		
	В	Explain the classification of niti	rogene	eous fertilizer with examples.	K1	CO-5
	.L	AnswerANVTHI	Section REE (onC Duestions (3x10= 30)		
26		Explain the formation of covale	nt bor	ad with two examples	K3	CO-1
27		Explain the classification of acid and bases with examples.				CO-2
28		Give an account on Acid–base a	and re	dox titration.	K3	CO-3
29		Explain the mechanism and mo	de of a	action of sulpha drugs?	K1	CO-4
30		Explain the classification and p Organophosphate pesticides.	prepar	ation and properties of Organochlorine and	K2	CO-5

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

TABLE OF SPECIFICATIONS (Question wise-No.ofquestions)

TABLE OF SPECIFICATIONS (Markswise–Totalmarks)

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	16	5	0	0	24
II	10	8	1	5	0	0	24
III	5	3	10	6	0	0	24
IV	12	7	5	0	0	0	24
V	11	12	1	0	0	0	24
Total	41	30	33	16	0	0	120

QP CODE- 20U1CHA01 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

DEPARTMENT OF CHEMISTRY MODEL QUESTION- ALLIED CHEMISTRY-I

Time: 3 Hrs.

Max.Marks: 75

Section -A Answer all questions (20x1=20)

The attraction of two ions due to opposite charge is known as					CO-1		
Α	ionic bonding	В	covalent bonding				
С	metallic bonding	D	dative bonding				
Ion	ic bonds are	K2	CO-1				
Α	easy to break	В	weak				
С	electrical bonds	D	very difficult to break				
The	The bond order of NO molecule is						
A	1	В	2				
С	2.5	D	3				
Wł	hich of the following compounds of bor	on does	s not exist in the free form	K1	CO-1		
Α	BC13	В	BF3				
С	BBr3	D	BH3				
Em nur	K 1	CO-2					
Α	positron	В	neutron				
С	alpha particle	D	gamma radiation				
A (A Geiger-Muller tube is a						
Α	Free radical	В	cationic				
С	anionic	D	condensation				
Wł	hich of the following describes what occ	curs in t	the fission process?	K 1	CO-2		
A	A heavy nucleus is fragmented into lighter ones.	В	A neutron is split into a neutron and proton.				
С	Two light nuclei are combined into a heavier one.	D	A proton is split into three quarks.				
Wł	hich type of radiation is the least penetr	ating?		K1	CO-2		
A	alpha	В	beta				
	The A C Ion A C The A C Wh A C Em nu A C Em nu A C Wh A	The attraction of two ions due to opposite A ionic bonding C metallic bonding Ionic bonds are A A easy to break C electrical bonds The bond order of NO molecule is A A 1 C 2.5 Which of the following compounds of bor A BC13 C BBr3 Emission of which one of the following lenumber unchanged? A positron C alpha particle A Geiger-Muller tube is a A Free radical C anionic Which of the following describes what oc A A heavy nucleus is fragmented into lighter ones. C Two light nuclei are combined into a heavier one. Which type of radiation is the least penetr A alpha	The attraction of two ions due to opposite chargeAionic bondingBCmetallic bondingDIonic bonds areAeasy to breakBCelectrical bondsDThe bond order of NO molecule isA1A1BC2.5DWhich of the following compounds of boron doesABC13BCBBr3DEmission of which one of the following leaves bonumber unchanged?BApositronBCalpha particleDA Geiger-Muller tube is aAAFree radicalBCanionicDWhich of the following describes what occurs in the fragmented into lighter ones.BCTwo light nuclei are combined into a heavier one.BAAlphaB	The attraction of two ions due to opposite charge is known asAionic bondingBcovalent bondingCmetallic bondingDdative bondingIonic bonds areAeasy to breakBweakCelectrical bondsDvery difficult to breakThe bond order of NO molecule isA1B2C2.5D3Which of the following compounds of boron does not exist in the free formABCI3BBF3CBBr3DBH3Emission of which one of the following leaves both atomic number and mass number unchanged?BApositronBneutronCalpha particleDgamma radiationA Greiger-Muller tube is aAFree radicalBAFree radicalBcationicCanionicDcondensationWhich of the following describes what occurs in the fission process?AA heavy nucleus is in the least penetrating?AalphaBBbeta	The attraction of two ions due to opposite charge is known as K2 A ionic bonding B covalent bonding C metallic bonding D dative bonding Ionic bonds are K2 A easy to break B weak C electrical bonds D very difficult to break The bond order of NO molecule is K2 A 1 B 2 C 2.5 D 3 Which of the following compounds of boron does not exist in the free form K1 A BC13 B BF3 C BBr3 D BH3 Emission of which one of the following leaves both atomic number and mass number unchanged? K4 A positron B neutron C alpha particle D gamma radiation A Free radical B cationic C anionic D condensation K4 Free radical B cationic C alpha particle D gamma radiation A Fre		

	С	gamma	D	x-ray		
9	In a	allene (C3H4), the type(s) of hybridisation	of t	he carbon atoms is (are)	K 1	CO-3
	A	sp and sp3	В	sp and sp2		
	С	Only sp2	D	sp ² and sp3		
10	Wh	ich one of the following is paramagnetic?	l		K1	CO-3
	A	N ₂	В	NO		
	С	СО	D	O_3		
11	Am con	ong the following the maximum covalent npound	cha	racter is shown by the	K2	CO-3
	A	MgCl ₂	В	FeCl ₂		
	С	SnCl ₂	D	AlCl ₃		
12	The is	e maximum number of hydrogen bonds that	at a 1	molecule of water can have	K4	CO-3
	A	1	В	3		
	С	2	D	4		
13	Ide	ntify the correct statement which is related	l to a	aromatic hydrocarbon?	K3	CO-4
	A	It has only sigma bonds	В	It has only pi bonds		
	С	It has a sigma and two pi bonds	D	It has a sigma and delocalized pi bond		
14	Wh	ich of the following statements regarding	elec	trophilic aromatic substitution is wrong?	K 1	CO-4
	A	Acetyl and cyano substituents are both deactivating and m- directing.	В	Alkyl groups are activating and o,p-directing.		
	С	Ammonio groups are m- directing but amino groups are and o,p directing.	_D	Chloro and methoxy substituents are both deactivating and o,p- directing.		
15	Wh	ich is most reactive towards an electrophi	le?		K 1	CO-4
	A		В	N.		
	С		D	N N N N N N N N N N N N N N N N N N N		
16	Wh	ich of the following solvents is a heterocy	clic	compound?	K1	CO-4
	A	DMSO.		B THF		

	С	DMF.	D	Diglyme		
17	Pec	pple add sodium chloride to water while boiling e	eggs	. This is to	K4	CO-5
	A	Decrease the boiling point.	В	Increase the boiling point.		
	С	Prevent the breaking of eggs.	D	Make eggs tasty.		
18	The that	e boiling point of an azeotropic mixture of water t of water and ethanol. The mixture shows	and	ethanol is less than	K4	CO-5
	A	No deviation from Raoult's Law.	В	Positive deviation from Raoult's Law.		
	С	Negative deviation from Raoult's Law.	D	That the solution is unsaturated.		
19	In v	which Chromatography s.p. is more polar than m	.p.?		K1	CO-5
	A	Ion exchange	В	Liquid liquid Chromatography		
	С	Reversed chromatography	D	None of the above		
20	Wh	at is Eluent ?	I		K1	CO-5
	A	Is a liquid solution.	В	Is a liquid solution that is a result from Elution		
	С	It is a solvent that used for separation of absorbed material from stationary phase.	, D	None of the above		
		Section B				
21	A	Answer All questions Explain the diamagnetism of nitrogen molecule	(5 x e on	x 5 = 25) the basis of M.O.theory.	K2	CO-1
				•		
	R	OR What are hydrides? How are they classified? G	ive	one example	K1	CO-1
22	A	Define and explain Nuclear fission and Nuclear	r fus	ion	K2	CO-2
	^ 1				112	
	В	Explain mass defect?			K2	CO-2
23	A	Explain Resonance and steric effect?			K1	CO-3
		OR				
	В	Explain Elements of symmetry?			K2	CO-3
24	A	What is aromaticity?explain with examples.			K2	CO-4
		OR				
	B	Explain Haworth synthesis of Napthalein?	•		K2	CO-4
25	A	Describe separation of liquids by fractional dist	tilla	tion.	K3	CO-5
		OR				
	В	Explain column chromatography?			K 1	CO-5

	Section C Answer ANY THREE Questions (3 x 10 = 30)		
26	What do you understand by the terms bonding and non- bonding molecular orbitals? Why are they so called? Illustrate with one example and Discuss in detail any two methods of preparation of Borazole and indicate three of its chemical properties	K1	CO-1
27	What is natural radioactivity? Explain with examples? and Discuss application of radioisotope?	K2	CO-2
28	Discuss the geomentrical isomerism in Maleic acid and fumaric acid. and Explain resolution methods.	K 1	CO-3
29	Write mechanism of acylation in benzene and How is pyrrole prepared? Explain five of its chemical properties	K 1	CO-4
30	Give the principle, method and applications of paper chromatography.	K2	CO-5

TABLE OF SPECIFICATIONS (Question wise – No. of questions)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	Total
Ι	3	4	0	0	0	0	7
II	3	3	0	1	0	0	7
III	4	2	0	1	0	0	7
IV	4	2	1	1	0	0	7
V	3	1	0	2	1	0	7
Total	17	1	1	5	1	0	35
		2					

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	6	1	0	0	0	0	24
		8					
II	3	2	0	1	0	0	24
		0					
III	17	6	0	1	0	0	24
IV	12	1	0	2	0	0	24
		0					
V	7	1	5	2	0	0	24
		0					
Total	45	6	05	06	0	0	120
		4					

HORAL INCOMENCENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	B.Sc	Programme Code		l	UCI	I	Regu	ilations	2	2021-2022
Department	Cl	nemistry				Semest	er			2
Course Code	Course Name			Periods per Week Credit			I	Maximu	ım l	Marks
			L	Т	Р	С	CA ESE		Total	
21U2CHC02	Core General	paper - II: Chemistry – II	5		0	5	25	75		100
Course Objectives	 To gain kno Acquire the To study about 	 To gain knowledge about inorganic elements and metallurgy. Acquire the knowledge about hydrocarbons. To study about Reagents and chemical equilibrium. 								
POs	PROGRAMME OUTCOME									
PO 1	Capable of der more discipline	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.								
PO 2	Demonstrate the complex inform	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.								
PO 3	Capability to a evidence, argur	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.								
PO 4	Apply one's lea	rning to real life situa	ations							
PO 5	Analyse and sy	nthesise data from a v	variet	y of	sou	rces.				
PO 6	Establish hypot and report the r	heses, predict cause- esults of an experime	and-e nt or	effec inve	et re estig	lationsł ation.	nips; ab	oility to	pla	n, execute
PO 7	Ability to work or coordinated	effectively and respe effort on the part of a	ctfull grou	ly w p.	rith o	diverse	teams;	facilita	te c	ooperative
PO 8	Ability to analy	se, interpret and draw	v con	clusi	ions	from q	uantitat	tive/qua	lita	tive data.
PO 9	Critical sensibi self and society	lity to lived experien	ces, v	with	sel	f aware	ness an	nd reflex	xivi	ty of both
PO 10	Capability to u access, evaluate	use ICT in a variety e, and use a variety of	of l relev	learı vant	ning info	situati rmatior	ons, de 1 source	emonstr e.	ate	ability to
PO 11	Ability to work	independently, identi	ify ap	pro	pria	te resou	rces red	quired f	or a	a project.
PO 12	Possess knowl perspective.	edge of the values	and	belie	efs	of mult	tiple cu	ultures	and	l a global
PO 13	Appreciating e unbiased and tr	environmental and s uthful actions in all as	sustai spects	nab s of	ility wor	issues k.	; and	adopti	ng	objective,
PO 14	Building a team members.	m who can help ach	ieve	the	visi	on, mo	tivating	g and in	nspi	iring team
PO 15	Ability to acqui	Ability to acquire knowledge and skills.								

COs	COURSE OUTCOME
CO 1	Students can identify s and zero block elements; methods of extraction, separation and purification of metals from its corresponding ore.
CO 2	Students can identify periodic elements in p block, such as borane chemistry and inter-halogen chemistry
CO 3	Students identify the methods of preparation and properties of alicyclic and acyclic hydrocarbons
CO 4	Students assess and classify organic reagents
CO 5	Students identify the various thermodynamic parameters and phase rule
Pre-requisites	Nil

					KN	NOWL	EDGE	LEVE	LS						
	1.Ren	nember	ring, 2.	Underst	anding	g, 3.Apj	plying,	4.Anal	yzing,	5.Evalu	ating, 6	5.Synthe	esizing		
					С	0 / PO	/ KL N	Aappin	g						
		(3/2/1)	1 indica	ates the	streng	th of co	rrelati	on, 3-st	trong, 2	2-mediu	ım, 1-w	eak)			
Cos	8				KLs				POs	3			KL	.s	
									PO	1			2		
CO	1				1				PO	2			3		
									PO	3			5		
									PO	4			1		
CO	2				3				PO	5			4		
									PO	6			3		
CO	2				2				PO '	7		6			
	3			2				PO 8				3			
								PO 9				1			
CO	4			4				PO 10				2			
	•			'				PO 12				4			
								PO 13				2			
СО	5			5				PO 14				2			
								PO 15				5			
						CO /1	PO Ma	nning	101						
		(3/2/	1 indica	ates the	streng	th of co	orrelati	on, 3-s	trong, i	2-mediu	ım, 1-w	eak)			
~~~						Pr	ogram	me Ou	tcome	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
C01	2	1	1	3	1	1	1	1	3	2	1	1	2	2	1
CO2	2	3	1	1	2	3	1	3	1	2	2	2	2	2	1
CO3	3	2	1	2	1	2	1	2	2	3	1	1	3	3	1
CO4	1	2	2	1	3	2	1	2	1	1	3	3	1	1	2
CO5	1	1	3	1	2	1	2	1	1	1	2	2	1	1	3

Course	Assessment	Methods
--------	------------	---------

## Direct

Continuous Assessment Test I, II & Model
 Assignment
 End Semester Examinations

Indirect

	Content of the Syllabus								
	Chemistry of s-block, zero group elements and metallurgy	Periods	12						
Unit - I	General characteristics of s-block elements – comparative st and their hydroxides, oxides and halides, alkaline earth meta and sulphates. Diagonal relationship of Li & Mg, Be & A Mg(NH4)PO4. Zero group elements – position in the period applications, compounds of Xe – XeF6 & XeOF4. Metallu concentration of ores – froth floatation, magnetic sep smelting, flux, alumino-thermic process, purification of meta- van Arkel de-Boer process.	udy of elements and their ox. Al, chemistry of lic table, occur argy : Occurren aration, calcin als – electrolysis	s – alkali metals ides, carbonates f NaOH, KI & rence, isolation, nce of metals – ation, roasting, s, zone refining,						
	p-block elements –I and II	Periods	12						
Unit - H	Synthesis and structure of diborane and higher boranes ( $B_4H_{10}$ and $B_5H_9$ ), boron-nitrogen compounds ( $B_3N_3H_6$ and BN). Preparation and applications of silanes and silicones.								
	Preparation and reactions of hydrazine, hydroxylamine. Clas (i) Chemical behaviour and (ii) Oxygen content. Inter hal	ssifications of coordinates of coordinates of coordinates of the second se	oxides based on ds and pseudo						
	halogens.	<b>D</b> · 1	10						
	Alkenes, alkynes and cycloalkanes	Periods	12						
Unit - III	Alkenes- orbital model of double bond, chemical reaction Electrophilic and free radical additions- Markovniko hydroboration, ozonolysis and allylic substitution by Elimination reactions-mechanisms of $E_1$ and $E_2$ Reacti- rule.Dienes - Types of dienes, reactions of conjugated diene to 1,3 – butadiene and Diel's - Alder reaction. dehydrohalogenation of dihalides, dehalogenation of tetral acetylenic hydrogen (formation of Metal acetylides). Preparation of higher acetylenes, Metal ammonia reductions, reactivity - electrophilic addition of $X_2$ , HX, H ₂ O (Tautome OsO4, reduction and Polymerization reaction of acetylene. Freunds method, Wislicenus method.Properties - reac- cyclobutane by comparing with alkanes, Stability of cycloal Sachse and Mohr predictions and Pitzer's strain theory. cyclobutane, cyclopentane, cyclohexane.	ns of alkenes- ff s rule, p NBS. Diels- ons -Hofmanr s - 1,2 and 1,4 Alkynes - 1 nalides, Proper , Physical proper rism), Oxidatio Nomenclature, ctivity of cyc kanes - Baeyer Conformationa	mechanism of eroxide effect, alder reaction. and saytzeff addition of HBr Preparation by ties; Acidity of erties. Chemical n with KMnO ₄ , Preparation by lopropane and 's strain theory, al structures of						
Unit - IV	Organic Reagents	Periods	12						

	Reagents in Organic Synthesis: Synthesis and applications Lead tetra-acetate, Osmium tetraoxide, Woodward Pre LiAlH ₄ , Grignard reagent, organozinc and organolithium re	of BF ₃ , NBS, evorst hydroxy agent.	Diazomethane, lation reagent,
	Chemical equilibrium and Phase equilibrium	Periods	12
Unit - V	Criteria of thermodynamic equilibrium, degree of advan- equilibria in ideal gases, concept of fugacity. Thermody between Gibbs free energy of reaction and reaction quotic endoergic reactions. Equilibrium constants and their temperature, pressure and concentration. Free energy thermodynamic derivation of relations between the various and Kx. Le- Chatelier principle (quantitative treatment); eq and a pure condensed phase. Phase Equilibrium : Phase ru component and simple two component systems, Nernst dis Dissociation phenomena	cement of rea ynamic derivat ent. Coupling of quantitative of of mixing an equilibrium co juilibrium betw ule and its app stribution law-	ction, chemical tion of relation of exoergic and dependence on nd spontaneity; onstants Kp, Kc veen ideal gases lications to one Association and
<u> </u>	Total Periods		60

Text	Books
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry 33rd edition, Vishal publishing co.,2017.
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, 47th edition, Vishal publishing co., 2017.
3	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, 22nd edition, New Delhi, S. Chand & Co., 2016.
4	Physical metallurgy : principles and practice / V. Raghavan (Formerly Professor, Indian Institute of Technology Delhi)
5	A textbook of qualitative inorganic analysis by A.I. Vogel
Refer	rences
1	Morrison R.T. and Boyd R.N., Organic Chemistry 7th Edition, Pearson Education, India 2010.
2	Madan. R. D., Inorganic Chemistry 3rd edition, New Delhi, S. Chand and Co., 2012.
3	Mukherji. S. M, Singh. S. P, Kapoor. R.P, Organic Chemistry 4th edition New age International pvt. limited 1998.
4	Cotton and Wilkinson's Basic Inorganic Chemistry
5	Jerry March's Advanced Organic Chemistry-Reactions, Mechanism and Structure
E-Re	ferences
1	https://www.khanacademy.org/science/biology/chemistryof-life/chemical-bonds-and- reactions/v/ionic- covalent-and-metallic-bonds
2	https://www.cliffsnotes.com/study-guides/chemistry/organic-chemistry-i/structure-and-properties-of- alkanes/alkanes-physical-properties

3	https://chem.libretexts.org/
4	http://www.chem.tamu.edu/class/fyp/mcquest/mcquest.html
5	http://nptel.ac.in/courses/104103069/15

HOREN EMPONENTIAL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
Programme	B.Sc	Programme Code			U	СН	Regulati	ons	20	)21-2022
Department	С	hemistry				Semester	I			2
Course Code	Со	Pe per	Periods per Week Credit			Max	imur	m Marks		
			L	Т	Р	С	CA	ES	Е	Total
21U2CHA02	Allied (Bio	Chemistry– II chemistry)	5			5	25	75	5	100
Course Objectives	To compile s towards indus organic and bi	To compile students with various chromatography techniques and its applications towards industries and research laboratories. To educate about the chemistry of bio-organic and bio-inorganic compounds and various kinds of drugs and its uses.								
POs		PROGRAMME OUTCOME								
PO 1	Capable of der disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.								
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.									
PO 3	Capability to evidence, argu	apply analytic though ments, claims, beliefs	nt to on th	a b e ba	ody sis c	of knowled of empirical e	ge; analys evidence.	se ar	nd	evaluate
PO 4	Apply one's le	arning to real life situa	ations			-				
PO 5	Analyse and sy	ynthesise data from a v	variety	/ of	soui	rces.				
PO 6	Establish hypo report the resu	theses, predict cause-a lts of an experiment or	and-e inve	ffect stiga	t relation	ationships; al 1.	bility to p	lan, e	exe	cute and
PO 7	Ability to wor coordinated ef	k effectively and respe fort on the part of a gr	ectfull oup.	y w	ith c	liverse teams	s; facilitat	e coo	ope	rative or
PO 8	Ability to anal	yse, interpret and draw	v cond	lusi	ons	from quantit	ative/qual	itativ	ve	lata.
PO 9	Critical sensib and society.	ility to lived experience	ces, w	vith	self	awareness a	nd reflexi	vity (	of l	ooth self
PO 10	Capability to u evaluate, and u	use ICT in a variety our seriety of relevant	f lear nt info	ning rma	g situ tion	uations, dem source.	onstrate a	bility	y to	) access,
PO 11	Ability to wor	k independently, identi	ify ap	prop	oriat	e resources r	equired fo	or a p	oroj	ect.
PO 12	Possess know perspective.	ledge of the values	and	bel	iefs	of multiple	e cultures	s and	d a	ı global
PO 13	Appreciating e and truthful ac	environmental and sus tions in all aspects of	tainal work.	oility	y iss	sues; and add	pting obj	ectiv	e, 1	unbiased
PO 14	Building a temembers.	am who can help ac	chieve	the	e vi	sion, motiva	ating and	insp	oiri	ng team
PO 15	Ability to acquire knowledge and skills.									

COs	COURSE OUTCOME
CO 1	Students predict the concept of various chromatographic techniques.
CO 2	Students are able to understand the biological importance of carbohydrate.
CO 3	Students identify the details of bioorganic compounds and bioinorganic compounds.
CO 4	Students utilize knowledge of antipyretics, analgesic, antiseptics, disinfectants and anesthetics Students can evaluate the different pharmaceutically important compounds and their uses in reallife
CO 5	Students acquired practical knowledge in elemental analysis and functional group identification.
Pre-requisites	Nil

					KN	OWL	EDGE	LEVE	LS						
	1.Ren	nember	ring, 2.	Underst	anding	g, 3.Apj	plying,	4.Anal	yzing,	5.Evalu	ating, 6	6.Synthe	esizing		
		(2.12.1			С	0 / PO	/ KL N	Aappin	g			• \			
		(3/2/]	l indica	ates the	strengt	th of co	rrelati	on, 3-st	rong, 2	2-medit	ım, 1-w	eak)			
Cos	8		-		KLs				POs	8			KL	.S	
CO	1								PO	1			1		
	1				I				PO	2			3		
			-						PO .	3			2		
СО	2				r				PO	+			4		
				2				PO 5					2		
									PO	7			4		
CO 3			2					PO 8				3			
								PO 9				4			
	PO 10					PO 10					5				
CO	4			3				PO 11				3			
									PO 12				2		
	~								PO 1	3		1			
	5			4				PO 14				4			
						<u> </u>			PO 1	.5		5			
		(3/2)	1 indice	ates the	streng	CO/I th of co	PO Ma rrelati	pping	trong	2-mediı	ım 1-w	eek)			
			I murc		ber eng	Pr	ogram	me Ou	tcome	(POs)	,	cuir)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	1	2	1	1	2	1	1	1	1	1	2	3	1	1
CO2	2	2	3	1	1	3	1	2	1	1	2	3	2	1	1
CO3	2	2	3	1	1	3	1	2	1	1	2	3	2	1	1
CO4	1	3	2	2	1	2	2	3	2	1	3	2	1	2	1
CO5	1	2	1	3	1	1	1	2	3	2	2	1	1	3	2

## **Course Assessment Methods**

### Direct

1. Continuous Assessment Test I, II & Model

2. Assignment3. End Semester Examinations

Indirect

Content of the Syllabus								
	Chromatography	Periods	12					
Unit - I	Chromatography-definition, types-column, paper, thinla application-Similarities and difference between GC/MS a pressure liquid chromatography –HPLC – principle-experime and advantages.	ayer, -method and ion chrom ental technique	of separation atography. High s-instrumentation					
	Aminoacids and Carbohydrates	Periods	12					
Unit - II	Aminoacids – Preparation- Gabriel method, Strecker synthesis glycine. Polypeptide –Proteins-Structure, properties and definition,Classification,Preparation and Reactions of glucose of glucose to fructose and vice-versa-sucrose, starch and cellu	s- Isoelectric per Classification. and fructose lose.	oint, Reactions of Carbohydrates- - Interconversion					
	Bio-inorganic Chemistry	Periods	12					
Unit - III	<b>Unit - III</b> Structure of chlorophyll, phorphyrin unit and photosynthesis. Nitrogen fixation, carbon cycle. structure of haem proteins: haemoglobin, myoglobin. Oxygen transport and respiration. Metallo enzymes. Role of alkali and alkaline earth metal ions in biological system.							
	Pharmaceutical Chemistry-II	Periods	12					
Unit - IV	Unit - IV       Structure and mode of action: Analgesics and Antipyretics-salicylic acid derivatives-aspirin, p- aminophenolderivatives- para acetamol and ibuprofen. Antiseptic and disinfectants-definition and distinction, crystal violet, acridine. Anaesthetics-definition, classification- local and general. Preparation, properties and uses of cocaine and benzococaine.							
	OrganicAnalysis	Periods	12					
Unit - V	Qualitative analysis of organic substances: test for saturational aromatic; acidicand basic nature of organic compound; elem functional groups like acid,phenol,aldehyde,ketone, car anilidesanddiamide.	on and unsatur nents test for N bohydrate,amin	ation; aliphatic & I, S and halogens: ie, ester, amide,					
	Total Periods		60					

Text	Books
1	Puri B.R., SharmaL.R., KaliaK.K., Principles of Inorganic Chemistry, 50 th edition, New Delhi, S.Chand&Co., (2011).
2	Puri B.R.,Sharma L.R.,Pathania M.S.,Principles of Physical Chemistry 23 rd edition. New Delhi,S.Chand&Co.,2004.
3	V. Venkateswaran, R.Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand&Co, 1995.
4	Bahl B.S.and Arun Bahl, Advanced Organic Chemistry, 22nd edition, New Delhi, S.Chand&Co.,2016.
5	Pandey.O.P, Bajpai.D.N., Giri.S., Practical Chemistry, NewDelhi, S.Chand&Co, 2012.
6	P.Parimoo, — A Text Book of Medicinal Chemistryl, CBS publishers, New Delhi, 2006
7	S.Lakshmi Pharmaceutical Chemistry, S.Chand & Sons, New Delhi, 2004
8	V.K. Ahluwalia and Madhu Chopra, —Medicinal Chemistryl, Ane Books, New Delhi, 2008
Refe	erences
1	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, NewDelhi, S.Chand &Co., 2008.
2	Sharma. B.K., Industrial chemistry including chemical engineering -16th- Meerut, Krishna prakasam media. 2011.
3	David William and Thomas Lemke, Foyes Principles of Medicinal Chemistry, BI Publishers.
4	Ashutosh Kar, —Medicinal Chemistryl, Wiley Eastern Ltd., New Delhi, 1993
E-R	eferences
1	https://www.khanacademy.org/test-prep/mcat/chemical- processes/separations- purifications/a/principles-of-chromatography
2	https://en.wikipedia.org/wiki/Carbohydrate.
3	https://chem.libretexts.org/

HOREN ENFORCEMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	B.Sc	Programme Code		UCH	[	Regul	ations	2020-2021	
Department		Chemistry			Semester			2	
Course Code	0	Course Name	pe	Periods er Week	Credi t		Maxii	num Marks	
20U2CHA02	Allie (Nut)	ed Chemistry – II rition & dietetics)	L 5	р 0	5 5	CA 25	ES 75	SE Total 100	
COURSE OBJECTIVES	To compile stud research laborato various kinds of o	ents with various chromato pries. To educate about the drugs and its uses.	graphy chem	technique istry of b	es and its a io-organic a	pplication and bio-ir	s towa norgani	rds industries and c compounds and	
POs		PROGRA	MME	OUTCON	<b>IE</b>				
PO 1	Capable of dem form a part of an	onstrating comprehensive k undergraduate programme of	nowlec of study	lge and u 7.	nderstanding	g of one	or more	e disciplines that	
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,								
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,								
PO 4	Capacity to extra non-familiar prol life situations.	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.							
PO 5	Ability to evaluarguments of oth	ate the reliability and releases; analyse and synthesis dates and synthes and synthesis dates and synthes and synthes and synthesis dates and synthes and synthesynthes and synthes and synthesynthes and synthes and synthes and	evance ata fror	of evider n a variety	nce; identify of sources;	v logical draw vali	flaws a d concl	and holes in the usions etc.,	
PO 6	A sense of inquir articulating; Abil	y and capability for asking r ity to recognise cause-and-ef	elevant fect rel	t/appropria lationships	ate questions s, define prol	, problem plems, for	atising, mulate	synthesizing and hypotheses etc.,	
PO 7	Ability to work e the part of a gro efficiently as a m	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.							
PO 8	Ability to analysideas, evidence a	e, interpret and draw conclu and experiences from an oper	isions f n-mind	from quanted and rea	titative/quali soned persp	tative data ective.	a; and c	ritically evaluate	
PO 9	Critical sensibili	ty to lived experiences, with	self aw	vareness a	nd reflexivit	y of both :	self and	society.	
PO 10	Capability to us variety of releva	Capability to use ICT in a variety of learning situations, demonstrate ability to access, valuate, and use a variety of relevant information sources; and use appropriate software for analysis of data.							
PO 11	Ability to work through to comp	independently, identify appr letion.	opriate	e resources	s required fo	or a projec	ct, and	manage a project	
PO 12	Possess knowled	ge of the values and beliefs	of mult	iple cultur	es and a glo	bal perspe	ective e	tc.,	

PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students predict the concept of various chromatographic techniques.
CO 2	Students identify the details of bio organic compounds and bio inorganic compounds.
CO 3	Students utilize knowledge of antipyretics, analgesic, antiseptics, disinfectants and anesthetics
CO 4	Students analyze the structure of different haem proteins.
CO 5	Students evaluate the different pharmaceutically important compounds and their uses in real life.
Pre-requisites	

Knowledge Levels									
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing									
CO / PO / KL Mapping									
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	KLs	POs	KLs						
CO 1	4	PO 1	2						
		PO 2	1						
CO 2	2								
		PO 3	5						
CO 3	3	PO 4	5						
	5	PO 5	4						
CO 4	4	PO 6	6						
		PO 7	2						
CO 5	5								
		PO 8	4						
PSOs	KLs	PO 9	1						
		PO 10	3						
PSO 1	3								
	-	PO 11	3						
	4	PO 12	2						
PSO 2	4	PO 13	1						
	1	PO 14	6						
PSO 3	1	PO 15	3						

CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
CO.	PROGRAMME OUTCOME (POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

<b>CO / PSO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
<u>co</u>	Programme Specific Outcome (POs)							
COs	CO1	CO2	CO3	CO4	CO5			
PSO1	2	2	3	2	1			
PSO2	3	1	2	3	2			
PSO3	1	2	1	1	1			

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model					
2. Assignment					
3. End SemesterExaminations					
Indirect					
1. Course End Delivery					

Content of the Syllabus										
	Co-ordination chemistry	Periods	12							
Unit - I	Co-ordination chemistry-definition of terms- classification of ligands-NomenclatureChelation- Examples. Chelate effect- explanation. Werner's theory-conductivity and precipitation studies. Sidgwick's theory- Effective Atomic Number concept. Pauling's theory-postulates-Application to octahedral, square planar and tetrahedral complexes. Pauling's theory and magnetic properties of complexes. Merits and demerits of Pauling's theory. Biological role of Haemoglobin and Chlorophyll (Elementary idea of structure and functions).									
	Carbohydrates & Aminoacids	Periods	12							
Unit - II	Carbohydrates: Classification, preparation and properties of Glucose and Fructose- Properties of Starch, Cellulose and derivatives of Cellulose. Inter conversion of Glucose to Fructose and vice versa. Amino Acids-classification, preparation and properties of Glycine and Alanine.									
	Pharmaceutical chemistry	Periods	12							
------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------	----	--	--	--	--	--	--	--
Unit - III	Chemotherapy: Preparation, uses and mode of action of sulpha drugs-prontosil, sulphadiazine and sulphafurazole. Uses of penicillin, chloramphenicol and streptomycin, Definition and one example each for-analgesics, antipyretics, tranquilizers, sedatives, hypnotics, local anaesthetics and general anaesthetics. Cause and treatment of diabetes, cancer andAIDS.									
	Photochemistry Periods 12									
Unit - IV	Grotthus-Draper law and Stark-Einstien's law of photochemical equivalence. Quantum yield. Example for photochemical reactions- Hydrogen-Chlorine reaction (elementary idea only) Photosynthesis. Phosphorescence and Fluorescence. Phase Rule: Phase rule and the definition of terms in it. Application of phase rule to water system. Reduced phase rule and its application to a simple eutetic system (Pb-Ag) Freezing mixtures.									
	Electro Chemistry	Periods	12							
Unit - V	Kohlrausch law -measurement of conductance, pH determination. Conductometic titrations. Galvanic cells-EMF-standard electrode potentials, reference electrodes. Corrosion: Methods of prevention.									
	Total Periods 60									

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry,50th edition, New Delhi, S. Chand & Co., (2011). R., Sharma L.R., Kalia K.K., Principles of
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry 23rdedition. New Delhi, S. Chand & Co., 2004. Applied Chemistry, New Delhi, S. Chand & Co., 2008.
3	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, 1995.
4	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, 22nd edition, New Delhi, S. Chand & Co., 2016.
5	Pandey.O.P, Bajpai.D.N., Giri.S., Practical Chemistry, New Delhi, S.Chand & Co, 2012.
References	
1	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, New Delhi, S. Chand & Co., 2008.
2	Sharma.B.K., Industrial chemistry including chemical engineering -16th- Meerut, Krishnaprakasam media. 2011.
<b>E-References</b>	
1	ps://www.khanacademy.org/test-prep/mcat/chemical-processes/separations-purifications/a/principles- chromatography
2	https://en.wikipedia.org/wiki/Carbohydrate.
3	https://chem.libretexts.org/

HOREN EMPONETURI	VIVEKANAN	TÖVRheinland	ISO 9001-2008 area har con 0. 9195079407								
Programme	B.Sc	Programme Code		I	UCH	]	Regulation	s 2	2021-2022		
Department		Chemistry			S	emester			2		
Course Code	C	P pe	erio r W	ods Veek	Credit	N	Aaximum	n Marks			
			L	Т	Р	С	CA	ESE	Total		
21U2CHCP01	Core Practical–l & Inorganic Pi	-Volumetric Estimations reparations			3	05	25	75	100		
Course Objectives	To understand the principles of volumetric analysis. To know about different types of volumetric titrations. To enable the students to have hands-on training on preparation of simple										
POs		PROGRAMME OUTCOME									
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.										
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.										
PO 3	Capability to a arguments, clai	pply analytic thought to a ms, beliefs on the basis of	a boo empi	ly o rica	of kno 1 evid	wledge; ence.	analyse a	nd evalu	ate evidence,		
PO 4	Apply one's lea	rning to real life situations	5.								
PO 5	Analyse and sy	nthesise data from a variet	y of s	sour	ces.						
PO 6	Establish hypot the results of an	theses, predict cause-and-enter experiment or investigation	effect on.	re	lations	ships; at	oility to pl	an, execu	ite and report		
PO 7	Ability to wor coordinated eff	rk effectively and respector on the part of a group.	ctfull	y v	vith d	iverse t	eams; fac	ilitate co	ooperative or		
PO 8	Ability to analy	vse, interpret and draw cond	clusi	ons	from o	quantitat	ive/qualita	tive data	•		
PO 9	Critical sensibi society.	lity to lived experiences,	with	se	lf awa	areness	and reflex	ivity of	both self and		
PO 10	Capability to us and use a variet	se ICT in a variety of learn by of relevant information s	ning sourc	situ e.	ations	, demon	strate abil	ity to acc	ess, evaluate,		
PO 11	Ability to work	independently, identify ap	prop	riat	e reso	urces rea	quired for	a project.			
PO 12	Possess knowle	edge of the values and belie	efs of	mu	ıltiple	cultures	and a glol	al perspe	ective.		
PO 13	Appreciating e truthful actions	nvironmental and sustain in all aspects of work.	abilit	y i	ssues;	and ac	lopting ob	jective,	unbiased and		
PO 14	Building a tean	n who can help achieve the	visio	on, i	motiva	ating and	l inspiring	team me	mbers.		
PO 15	Ability to acquire knowledge and skills.										

COs	COURSE OUTCOME
CO 1	Students will learn how to make solutions and do the titrations with different kinds
CO 2	Students will understand reactions taking place during the experiment
CO 3	The students will be able to apply the knowledge about nature, significance, and influence of errors and to be avoided or minimized during quantitative examination of experiment
CO 4	Students will analyze the given samples volumetrically
CO 5	To evaluate the known techniques to prepare, recrystallize and finding melting point of simple inorganic Compound
Pre-requisites	

KNOWLEDGE LEVELS													
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing													
		С	O/PO	/ KL N	Mappin	g			• \				
(3/2/1	indicates the	strengt	th of co	rrelati	on, 3-si	trong, 2	2-mediu	Im, I-w	eak)				
Cos		KLs				POs	3			KL	.s		
<b>CO</b> 1						PO	1			2			
COT		2				PO	2			3			
						PO	3			4			
00.2						PO	4			5			
		4				PO :	5			1			
						PO	6			6			
CO 3						PO	7		2				
05	1				PO 8				3				
					PO 9				3				
CO 4	1				PO 10				2				
0.04					PO 11				4				
					PO 12 PO 13				3				
CO 5						PO 13				2			
	3				PO 14				4				
			<u>CO/1</u>	PO Ma	nning	101	5			1			
(3/2/1	indicates the	streng	th of co	rrelati	on. 3-s	trong. (	2-medir	ım. 1-w	eak)				
			Pr	ogram	me Ou	tcome	(POs)	,	/				
COs PO1 PO2	PO3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1 3 2	1 1	2	1	1	2	2	3	1	2	3	1	2	
CO2 1 2	3 2	1	1	1	2	2	1	3	2	1	3	1	
CO3 2 1	1 1	3	1	2	1	1	2	1	1	2	1	3	
CO4 2 1	1 1	3	1	2	1	1	2	1	1	2	1	3	
CO5 2 3	2 1	1	1	2	3	3	2	2	3	2	2	1	

	Course Assessment Methods		
Direct			
<ol> <li>Continuo</li> <li>Assignme</li> <li>End Seme</li> </ol>	us Assessment Test I, II & Model ent ester Examinations		
Indirect			
1. Course E	nd Delivery		
	Content of the Syllabus		
	Acidimetry	Periods	9
Unit - I	<ol> <li>Estimation of sodium hydroxide-standard sodiumcarbonat</li> <li>Estimation of hydrochloric acid- standard oxalicacid.</li> <li>Estimation of Oxalic acid -standard-oxalicacid</li> </ol>	e.	
	Permanganometry	Periods	9
Unit - II	<ol> <li>Estimation of oxalic acid – std-Mohr s salt or ferroussulph</li> <li>Estimation of sodium nitrite-standard oxalicacid.</li> <li>Estimation of ferrousion.</li> </ol>	ate.	
	Iodometry	Periods	6
Unit - III	<ol> <li>Estimation of copper-standard Potassiumdichromate.</li> <li>Estimation of Potassium dichromate-standard potassium d</li> </ol>	ichromate	
	Potentiometry	Periods	3
Unit - IV	<ol> <li>Potentiometric titration- Strong acid vs Strong base, 2. V</li> <li>Precipitation titration – KCl vs AgNO₃</li> </ol>	Veak acid vs Stro	ng base.
	INORGANIC PREPARATIONS	Periods	15
Unit - V	<ol> <li>Micro-Cosmicsalt.</li> <li>Potassium trioxalatochromate(III)</li> <li>Ferrous Ammonium sulphate.</li> <li>Tetramminecoppersulphate(II)</li> <li>Tris thiourea copper chloride(I)</li> </ol>		
	Total Periods		42

Text ]	Books						
1	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).						
Refer	rences						
1	Pandey O. P, Bajpai D. N., Giri S., Practical Chemistry, New Delhi, S.Chand & Co, (2012)						
E-Re	ferences						
1	https://byjus.com/chemistry/volumetric-analysis/						
2	https://chem.libretexts.org						

HOMAL INCIDENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.											
Programme	B.Sc Programme Code UCH Regulations 2021-2											
Department		Chemistry Semester 2										
Course Code		Credit	Maximum M			Aarks						
			L	Т	Р	С	CA	ES	SE	Total		
21U2CHAP01	Alli (Bi	ed Chemistry Practicals ochemistry and N&D )			5	5	25	7:	5	100		
Course Objectives	To understand hands-on traini	the principles of volumet ng on qualitative analysis o	ric a f orga	naly	ysis	. To en	able the	stud	ent	s to have		
POs		PROGRAMME OUTCOME										
PO 1	Capable of der disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.										
PO 2	Demonstrate the complex inform	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.										
PO 3	Capability to a evidence, arguing	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.										
PO 4	Apply one's le	arning to real life situations.										
PO 5	Analyse and sy	onthesise data from a variety	of so	ourc	es.							
PO 6	Establish hypo report the resul	theses, predict cause-and-ef ts of an experiment or inves	fect r tigati	elat	ion	ships; al	bility to p	lan,	exe	cute and		
PO 7	Ability to work coordinated eff	c effectively and respectfull fort on the part of a group.	y wit	h di	ver	se teams	s; facilitat	e co	ope	rative or		
PO 8	Ability to analy	yse, interpret and draw conc	lusio	ns f	ron	n quantit	ative/qua	litati	ve o	data.		
PO 9	Critical sensibi and society.	lity to lived experiences, w	ith se	elf a	wa	reness a	nd reflexi	vity	of	both self		
PO 10	Capability to u evaluate, and u	se ICT in a variety of learn se a variety of relevant info	ning s rmati	situa on s	atio sou	ns, dem rce.	onstrate a	ıbilit	y to	) access,		
PO 11	Ability to work	c independently, identify app	oropr	iate	res	ources r	equired for	or a j	proj	ject.		
PO 12	Possess know	ledge of the values and	belie	fs	of	multiple	e culture	s an	d a	a global		
PO 13	Appreciating e and truthful act	nvironmental and sustainab tions in all aspects of work.	ility	issu	es;	and add	pting obj	ectiv	/e, 1	unbiased		
PO 14	Building a tea members.	am who can help achieve	the	visi	ion,	motiva	ating and	insp	piri	ng team		
PO 15	Ability to acqu	Ability to acquire knowledge and skills.										

COs	COURSE OUTCOME
CO 1	Students will learn how to conduct a volumetric estimation process precisely
CO 2	Students will understand reactions taking place during the experiment.
CO 3	Students will plan, conduct, review and report the experiment
CO 4	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during quantitative examination of a chemical compound. Students will gain knowledge about analysis of organic compounds.
CO 5	Students will evaluate the reactivity of various functional groups.
Pre-requisites	Nil

					KN	OWL	EDGE	LEVE	LS						
	1.Ren	nember	ring, 2.	Underst	tanding	g, 3.Apj	plying,	4.Anal	yzing,	5.Evalu	ating, 6	5.Synthe	esizing		
		(3/2/1	india	tos tho	C	O / PO	/ KL N	Aappin	g trong	2 modiu	um 1 u	(ook)			
Со	s	(3121)		ttes the	KLs			011, 3-50	POs	2-mean	<u>, 1-w</u>	cak)	KL	.s	
									PO	1			3		
CO	1				2				PO	2			1		
									PO	3			4		
	_								PO	4			2		
CO	2				1				PO	5			6		
									PO	6			2		
$CO^{2}$							PO 7				3				
	03			3				PO 8				4			
								PO 10				2			
СО	4			5					PO 1	1			4		
								PO 12				4			
				4				PO 13				3			
CO	5							PO 14				4			
								PO 15				2			
						CO/I	PO Ma	pping							
	1	(3/2/)	l indica	ates the	streng	th of co	orrelati	on, 3-s	trong, i	2-mediu	ım, 1-w	reak)			
COs		1		1	1	Pr	ogram	me Ou	tcome	(POs)					1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	3	1	1	1	1	3	2	1	1	2	2	1
CO2	2	3	1	1	2	3	1	3	1	2	2	2	2	2	1
CO3	3	2	1	2	1	2	1	2	2	3	1	1	3	3	1
CO4	1	2	2	1	3	2	1	2	1	1	3	3	1	1	2
CO5	1	1	3	1	2	1	2	1	1	1	2	2	1	1	3

Course Assessment Methods							
Direct							
1. Continuo	us Assessment Test I, II & Model						
2. Assignme	ent						
J. Ella Sella Indirect	ester Examinations						
	nd Daliment						
1. Course E							
	Content of the Syllabus	1	1				
	Volumetric Estimations-Acidimetry	Periods	9				
Unit – I	<ol> <li>Estimation of sodium hydroxide-standard sodium carbonate</li> <li>Estimation of Oxalic acid -standard-oxalic acid.</li> <li>Estimation of Hydrochloric acid - standard oxalic acid</li> </ol>						
	Permanganometry	Periods	9				
Unit – II	<ol> <li>Estimation of oxalic acid-std-Mohrs salt or ferrous sulphate.</li> <li>Estimation of sodium nitrite-standard oxalic acid.</li> <li>Estimation of ferrous ion.</li> </ol>						
	Qualitative Organic Analysis	Periods	9				
Unit – III	Systematic analysis of organic compounds: Characterizatio their functional groups and confirmation by preparation of that may be studied:Aldehydes, Ketones, carboxylic acids.	n of Organic derivative. Fur	compounds by actional groups				
	Qualitative Organic Analysis	Periods	9				
Unit – IV	Unit – IV       Systematic analysis of organic compounds: Characterization of Organic compounds by their functional groups and confirmation by preparation of derivative. Functional groups that may be studied: aromatic primary amines, phenol. amide. diamide						
	Qualitative Organic Analysis	Periods	9				
Unit – V	Systematic analysis of organic compounds: Characterization their functional groups and confirmation by preparation of that may be studied: Nitro compounds and monosaccharides	on of Organic derivative. Fur	compounds by actional groups				
	Total Periods		75				

Text	Text Books									
1	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S. Chand & Co, (1995).									
Refe	References									
1	Pandey O. P, Bajpai D. N., Giri S., Practical Chemistry, New Delhi, S.Chand & Co, (2012).									
E-Re	E-References									
1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html									
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1									
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1									

#### QP CODE-21U2CHC02 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

#### (Autonomous)

#### **DEPARTMENT OF CHEMISTRY**

# **B.Sc. DEGREE EXAMINATION**

#### **MODEL QUESTION- GENERAL CHEMISTRY – II**

Time: 3 Hrs.

Max.Marks: 75

1	Which of the compounds is known as Slaked lime?				K1	CO-1
		CaO	B	CaSO ₄		
		CaCO ₃	D	Ca(OH) ₂		
2	Plast	er of Paris (POP) is	<u>I</u>		K1	CO-1
	Α	CaSO ₄ H ₂ O	B	CaSO ₄ 2H ₂ O		
	C	$CaSO_4 1/2H_2O$	D	CaSO ₄		
3	Sulp	bhide ores are concentrated	by	4	К2	CO-1
	Α	magnetic separation	В	froth floatation		
	С	hydraulic washing.	D	gravity separation		
4	Hea	t of ore in presence of air is	calle	d	K2	CO-1
	Α	calcination	B	smelting		
	С	roasting	D	none of the above		
5	Whi	ich is the correct order of de	creas	sing acidity of lewis acids?	K2	CO-2
	Α	$BBr_3 > BCl_3 > BF_3$	B	$BF_3 > BCl_3 > BBr_3$		
	С	$BCl_3 > BF_3 > BBr_3$	D	$BBr_3 > BF_3 > BCl_3$		
6	Oxyg	gen is not released on heatin	g wh	ich of the compounds?	<b>K</b> 1	CO-2
	Α	(NH4)2Cr2O7	В	K ₂ Cr ₂ O ₇		
	С	$Zn(ClO_3)_2$	D	KClO ₃		
7	Nan	ne the element purified by e	lectro	olysis method	<b>K</b> 1	CO-2
	Α	Al	В	Fe		

#### Section A Answer all questions (20 x 1 = 20)

	C	Cu	D	U		
8	What	is the ore of aluminium			K1	CO-2
	Α	Cuprrite	В	Ferrite		
	C	Bauxite	D	Aluminate		
9	Wh	ich is more acidic of the follo	owii	ng	K1	CO-3
	Α	CH2=CH2	В	СНЕСН		
	C	CH2=CH2	D	All of these		
10	Whi for t	ch one of the following prohe 1,2 and 1,4 addition of but	odu adie	ct is thermodynamically stable	K1	CO-3
	Α	1,4 adduct	В	1,2 adduct		
	C	Both	D	None		
11	Whic	h one the following is allened	K1	CO-3		
	Α	CH2=CH-CH=CH2	В	CH2=C=CH2		
	С	CH2=CH-CH2-CH3	D	None of these		
12	Orde	er of reactivity for the addition	<b>K</b> 1	CO-3		
	Α	HCl > HBr > HI	В	HI > HBr > HCl		
	С	HBr > HI > HCl	D	HI > HCl > HBr		
13	Whi grou	ch is the mildest reducing a prior presence of nitro, carbo	igen xyl,	t which reduces only carbonyl double bond and ester groups?	<b>K</b> 1	CO-3
	A	LiAIH ₄	В	Na-NH ₃		
	C	H ₂ -Ni	D	NaBH ₄		
14	Hov	v acetophenone can be conve	rted	to phenol by reaction?	K1	CO-4
	Α	m-CPBA followed by base catalysed hydrolysis	В	conc. HN0 ₃		
	C	iodine and NaOH	D	Singlet oxygen followed by base catalysed hydrolysis product		
15	Whi com	ch of the reagent will give pounds?	eff	ective transformation of given	K1	CO-4
	A	CH ₂ N ₂	B	CH ₃ Li		
	C	(CH ₃ ) ₂ CuLi	D	$Ph_3P = CH_2$		
16	Whi hexe	ch of the will give effective	rec	luction of 3-hexyne to trans-3-	K1	CO-4
	A	H ₂ /Lindlar's catalyst	B	Na/liq. NH ₃		

	C	Fe/NaCl	D	DIBAL			
17	What cond	at will be the pH of a centration of $B^-$ and HB (K _b =	buf = 1(	fer solution having an equal $D^{-10}$ for $B^-$ )	K1	CO-5	
	Α	7	В	6			
	C	4	D	10			
18	Finc	the conjugate acid of NH ₂ ⁻		L	<b>K</b> 1	CO-5	
	A	NH ₃	В	NH4OH			
	C	NH4 ⁺	D	NH2 ⁻			
19	On read	increasing the concentrat	K1	CO-5			
	A	depend on the concentration	В	increase			
	C	unchanged	D	decrease			
20	Finc mix	the pH of a solution when ed in equal volumes	K1	CO-4			
	Α	12.65	В	1.04			
	С	7.0	D	2.0			
		Sect Answer All question	ion s (5	B = 25			
21	A	Write down the general ch	K2	CO-1			
		Alkali metals b) Alkali eart	h n	netals			
			1.	<u>~ · · ·</u>			
	В	Define electrolysis and exp	plan	n zone refining process	K2	CO-1	
22	Α	Write down the classificatio	n of	foxides.	K2	CO-2	
		OR					
	В	Synthesis of diborane and h	nigh	er borane	K3	CO-2	
23	A	Discuss in detail about 1,2	and	1,4 addition reaction	К3	CO-3	
		OR					
	В	Write the conformationa cyclopentane.	l s	tructures of cyclobutane and	K2	CO-3	
24	A	Discuss organozinc and org	gano	olithium reagent.	K2	CO-4	
		OR					
	В	Elucidate Woodward Prevo	orst	hydroxylation reagent	K2	CO-4	
25	Α	Define Phase rule and expl	Define Phase rule and explain one component system				
		OR					

	B Explain the equilibrium constants and their quantitative dependence on temperature, pressure and concentration.	К2	CO-5							
	Section C Answer ANY THREE Questions (3 x 10 = 30)									
26	Explain froth floatation, magnetic separation, calcination and roasting processes	K4	CO-1							
27	Explain the preparation and reactions of hydrazine and hydroxylamine	К3	CO-2							
28	<ul><li>A) Explain Hofmann and saytzeff'srule.</li><li>B) Explain Freunds and Wislicenus methods</li></ul>	K3	CO-3							
29	Synthesis and applications of BF3, NBS and Diazomethane	K3	CO-4							
30	Discuss the relation between Gibbs free energy of reaction and reaction quotient	K4	CO-5							

# TABLE OF SPECIFICATIONS (Question wise - No. of questions)

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	2	4	-	1	-	-	7
II	3	2	2	-	-	-	7
III	5	-	2	-	-	-	7
IV	4	2	1	-	-	-	7
V	5	1	-	1	-	-	7
Total	19	10	5	2	-	-	35

## TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
T	6	4	-	10	-	_	20
II	3	5	10	-	_	-	18
III	9	-	10	-	_	-	19
IV	4	1	20	10	-	-	44
		0					
V	9	-	-	10	-	-	19
Total	3	1	40	30	-	-	120
	1	9					

## QP CODE-21U2CHA02

#### VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) **DEPARTMENT OF CHEMISTRY B.Sc., DEGREE EXAMINATION MODEL QUESTION- ALLIED CHEMISTRY – II** (BIO-CHEMISTRY)

Time: 3 Hrs.

Max.Marks:75

_		1	Ans	wer all questions $(10 \times 1 = 10)$		
1	WI the	hich technique is used to separ basis of differencein affinities	rate ofpl	the the compounds on nase	K1	CO-1
	Α	Chromatography	В	Polarography		
	С	Thermography	D	Chromography		
2	Wl me	nich of the following is the m thods?	ost	sensitive of the spectral	K1	CO-1
	А	Absorption spectroscopy	В	Mass spectroscopy		
•••••	С	Flame emission spectroscopy	D	Atomic emission spectroscopy		
3	GC	C- MS has been developed for wh	ich	of the following systems?	<b>K</b> 1	CO-1
	Α	Packed column	В	Open tubular column		
	С	Capillary column	D	Porous layer column		
4	Wl suł	hich type of chromatography ostance	is	applied to coloured and colourless	К3	CO-1
	Α	Paper	В	Column		
	С	Thin layer	D	HPLC		
5	An	ninoacidscontain	fu	nctionalgroups	K2	CO-2
	Α	1	В	2		
	С	3	D	4		
6	ele	is the pH at whit	ich	the amino acid does not migrate in an	K2	CO-2
	Α	Isoelectric point	В	electric point		
	С	Electronic point	D	None		
7	Th cel	e microorganisms secrete an lulose is known as	enz	yme which helps in the digestion of	К3	CO-2
	А	Cellulase	В	Catalase		
•	С	Sucrase	D	Pepsin		

# Section A

8	Al	dehyde group present in carboh	ydra	ate is known as	K2	CO-2
	A	Aldose	В	Ketose		
	С	Hexose	D	Sucrose		
9	Vi	tamins areclassifiedinto		types.	K2	CO-3
	Α	2	В	3		
	С	4	D	5		
10	W	hich element present in the chlo	rop	hyll?	K2	CO-3
	A	Mg	В	Ca		
	С	Р	D	СО		
11	Ba	sic unit of Phorphyrin	L		K2	CO-3
	A	Indole	В	Imdazole		
	С	Quinole	D	Pyrole		
12	W	hich element is present in the ha	nem	oglobin?	K4	CO-3
	A	Cu	В	Ag		
	С	Fe	D	Au		
13	W	hich metal found in vitamin B12	2?		K1	CO-4
	A	Со	В	Cu		
	С	Mg	D	Sn		
14	W	hich one is example for Narcoti	c an	algesics?	K1	CO-4
	Α	Morphine	В	Papaverine		
	С	salicyladehyde	D	Benzoicacid		
15	Sa	licyladehyde group of Aspirin			K2	CO-4
	Α	COOCH ₃	В	СНО		
	С	Cl	D	NO ₂		
16	p-a	aminophenol used for			K2	CO-4
	Α	Pain reliver	В	Anti-inflammatory		
	С	Anti-septic agent	D	anti-bacterial drugs		
17	W	hich among the following comp	oun	d found only in liquid nature?	K2	CO-5
	Α	Amine	В	Acid		
	С	Monoamide	D	All		
18	W	hich compound shows aliphatic	nat	ure?	K1	CO-5
	A	Carbohydrate	В	amine		
	С	Monoamide	D	Acid		

19	Wl	nich among the following comp	nong the following compounds contain nitrogen?						
	A	Aldehyde	В	amine					
	С	Acid	D	Alcohol					
20	Wl	nich test gives positive result for	r an	nides.?	K3	CO-5			
	A	Biuret test	В	Silver mirror test					
	С	Lieberrmanns test	D	Phthalein fusion test.					
•••••		S American All curveties	ecti	on B					
21	A	Similarities and differencebety	vee	$S \times S = 2S$ ) n GC/MS and ion chromatography.	K4	CO-1			
		OR							
	В	Write short notes on methods of	of se	eparation of column chromatography	K3	CO-1			
22	Α	Explain the preparation of ami	no	acids by Gabriel method and strecker's	K2	CO-2			
		synthesis							
	B	Write the preparation of aluco	Vrite the preparation of glucose						
72		Polo of alkali and alkaling our	sc. th n	atal iong in high-giaal system	<b>V</b> 1				
23	А		K1	0-3					
<b>.</b>	B		K/	CO 3					
24	D A	Write short notes on nitrogen	nxa	tion.	N4 V2	CO-3			
24	A	Explain the mode of Action of	pa	racetamol& lbuprolen.	К3	CO-4			
	П	OR			IZ O	CO 4			
~-	В	Explain the analgesics with ex	amj	ples.	K2	CO-4			
25	A	How will you find out the aromatic and saturation or uns	give atui	en organic compound as aliphatic or ration?	KI	CO-5			
		OR							
	В	Write an elemental test for N,	S a	nd halogens	<b>K</b> 1	CO-5			
	.4	Sec	tior	n C					
		Answer ANY THREE Qu	esti	ons $(3 \times 10 = 30)$					
26		Explain the instrumentation an	nd a	pplication of HPLC.	К3	CO-1			
27		Structure, properties and Class	sific	cation of proteins	<b>K</b> 1	CO-2			
28		Explain oxygen transport and	resp	piration.	K3	CO-3			
29		Explain the classification of A	nes	thetics with example.	K1	CO-4			
30		How will you identify the aldehyde?	will you identify the given organic compound as pheno yde?						

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

# TABLE OF SPECIFICATIONS (Question wise - No. of questions)

# TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1 (Remembering)	K2 (Understanding)	K3 (Applying)	K4 (Analyzing)	K5 (Evaluating)	K6 (Creating)	Total
Ι	3	0	16	5	0	0	24
II	1	8	1	5	0	0	24
	0						
III	5	3	10	6	0	0	24
IV	1	7	5	0	0	0	24
	2						
V	1	1	1	0	0	0	24
	1	2					
Total	41	30	33	16	0	0	120

## QP CODE- 20U1CHA02 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN (Autonomous)

# DEPARTMENT OF CHEMISTRY MODEL QUESTION- ALLIED CHEMISTRY-II

## Time: 3 Hrs.

#### Max.Marks: 75

#### Section -A Answer all questions (20x1=20)

1	Wri	te the name of the following complexe	es:[C	oCl ₃ (NH ₃ ) ₃ ]	K3	CO-1
	Α	Triamminetrichlorocobalt(III)	В	Trichlorotriamminecobalt(III)		
	С	Triamminecobalt(III)trichloride	D	Triamminecobalt(II)chloride		
2	In c	oordination chemistry, the donor atom	n of a	ligand is	K1	CO-1
	Α	a Lewis acid	В	the counter ion		
	С	the counter ion	D	the atom in the ligand that shares an electron pair with the metal		
3	The	shape of CHCl ₃ molecule is			K3	CO-1
	Α	Linear	В	Pyramidal		
	С	Tetrahedral	D	Trigonal bipyramidal		
4	4 Which of the following are the types of Chlorophyll?					CO-1
	Α	Chlorophyll a	В	Chlorophyll b		
	С	Chlorophyll c1	D	All of them		
5	Pla	nts convert glucose ( $C_6H_{12}O_6$ ) in to		4	K2	CO-2
	Α	Starch only	В	Cellulose only		
	С	Sucrose	D	Starch and cellulose		
6	Fru	ictose ( $C_6H_{12}O_6$ ) is very uncommon in		<u> </u>	K2	CO-2
	Α	Animals	В	Plants		
	С	Herbs	D	Ferns		
7	The	e simplest amino acid is	.i		K2	CO-2
	Α	Glycine	В	Alanine		
	C	Asparagine	D	Tyrosine		
8	Stare	ch is commonly formed and stored in		A	K1	CO-2
•	Α	Animals	В	Plants		
	C	Fish	D	Insects		

9	At normal the pH value of penicillin remains in				K4	CO-3
	Α	Solvent phase	В	Precipitates		
	С	Aqueous phase	D	Both (a) and (b)		
10	ΗΓ	V is thought to have originated from	L	L	K2	CO-3
	Α	Birds	В	Mosquitos		
	С	Chimpanzees	D	None of the above		
11	An	tibiotics are used to treat infections by		<b>L</b>	К3	CO-3
	Α	Virus	В	Bacteria		
	С	All the microorganisms	D	None of the above		
12	Wh	ich of the following species is used fo	r pro	ducing streptomycin?	K2	CO-3
	Α	S. ramosus	В	S. griseus		
	С	S. aureofaciens	D	S. griseoflavus		
13	Gib	bs phase rule for general system			K3	CO-4
	Α	P+F=C-1	В	P+F=C+1		
	С	P+F=C-2	D	P+F=C+2		
14	The	degree of freedom at triple point in ur	hary	diagram for water	K5	CO-4
	Α	0	В	1		
	С	2	D	3		
15		is also known as Principle of	f Qu	antum Activation	K2	CO-4
	Α	Lambert's law	В	Beer's law		
	С	Stark-Einstein law	D	Stark law		
16	Gro	thus – Draper law is in na	ature		K2	CO-4
	Α	Purely qualitative	В	Qualitative and quantitative		
	С	Quantitative	D	non-acceptable		
17	Ch	emical used in salt bridge is			K2	CO-5
	Α	КОН	В	KCl		
	С	KNO ₂	D	KBr		
18	The	e value of E° is known as	<b>.</b>	<b>K</b>	K1	CO-5
	Α	Standard electrode potential	В	Standard cell potential		
	С	Standard charge potential	D	Standard ion potential		
19	Wh	ich of the following cannot be used as	seco	ondary reference electrode?	K3	CO-5
	A	Calomel electrode	В	Silver-silver chloride electrode	••••••	
	С	Mercury-mercury sulphate electrode	D	Glass electrode		

20	Eleo	ctric potential and Electromotive force	K3	CO-5		
	Α	Different terms	В	Have different units		
	C	Same terms	D	Undefined terms		
		Se	ction	B		
	-	AnswerAllque	estio	ns (5x5=25)		
21	A	Determine the EAN of the central me $K_4[Fe(CN)_6]$ , $K_2[Cd(CN)_4]$ .	tal a	tom in the following complexes:	K5	CO-1
		OR				
	В	Write briefly or biologically importan	ce of	haemoglobin.	K2	CO-1
22	A	How are Glycine and Alanine are pr	epare	ed?	K2	CO-2
		OR				
	В	Write the preparation and structure o	f Fru	ctose?	K3	CO-2
23	A	Write the structure of chloramphenic	ol?		K1	CO-3
		OR				
	В	What is meant by antipyretics and tra	ansqu	ilizers with suitable example?	K2	CO-3
24	A	Discuss about the Grotthus-Draper la	w in	photochemistry.	K3	CO-4
		OR				
	В	Write short notes on phosphorescenc	e and	l fluorescence.	K2	CO-4
25	A	Explain the Galvanic cell with neat d	iagra	ım?	K3	CO-5
		OR				
	В	Discuss the prevention methods of co	orros	ion.	K2	CO-5
		Section	С			
	·	Answer ANY T	HRI	EE Questions (3x10= 30)		
26		How does Werner's co-ordination the compounds?	neory	explain the formation of complex	K3	CO-1
27		Explain the structural Elucidation of	Glu	cose?	K2	CO-2
28		Explain the preparation and uses of s	sulph	adiazine?	K2	CO-3
29		Explain the neat diagram about simp	ole et	itectic (Pb-Ag) system.	K2	CO-4
30		State and explain Kohlraush's law as	nd its	s applications.	K3	CO-5

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	4	0	0	0	0	7
II	3	3	0	1	0	0	7
III	4	2	0	1	0	0	7
IV	4	2	1	1	0	0	7
V	3	1	0	2	1	0	7
Total	17	1	1	5	1	0	35
		2					

#### TABLE OF SPECIFICATIONS (Question wise - No. of questions)

## TABLE OF SPECIFICATIONS (Marks wise - Total marks)

			``````````````````````````````````````		/		1
Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
	х с <i>у</i>	× <i>U</i> /	× 11 5 C/	× ; e/	× <i>U</i> /	× <i>U</i> /	
Ι	6	1	0	0	0	0	24
		8					
II	3	2	0	1	0	0	24
		0					
III	17	6	0	1	0	0	24
IV	12	1	0	2	0	0	24
		0					
V	7	1	5	2	0	0	24
		0					
Total	45	6	05	06	0	0	120
		4					

Signional INSTITUT
(Q + 3)
11 + 1992 + Without
OMEN EMPOWERMEN

# VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

Elayampalayam, Tiruchengode-637 205.

Programme	B.Sc	Programme Code	UCH Regulations						2018-2019		
Department		Chemistry			Semester				3		
Course Code		Course Name	Peri	ods	Credit		Maximu	m N	Aarks		
Course Code	(	Course Name					1				
		L P C CA ESE Total									
18U3CHC03	Gene	Core Paper –III ral Chemistry-III	0	0	5	25	/5		100		
COURSE	To acquire know	vledge about the fundamental	ls and prin	nciple	es of chemistry	y.2.To edu	cate the s	stud	ents about		
OBJECTIVES	the functional gr	oups of organic compounds.	3.To und	erstan	d the concept	of thermo	dynamic	terr	ns.		
POs		PROGRA	AMME C	OUTC	COME						
PO 1	Capable of dem form a part of an	onstrating comprehensive k undergraduate programme	nowledge ofstudy.	and	understandin	g of one o	or more	disc	ciplines that		
PO 2	Ability to expre appropriate med	ess thoughts and ideas effective ia; confidently share ones view	ctively in ews and e	writ xpres	ingand orally s herself/hims	r; Commu self etc.,	nicate w	ith	others using		
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,										
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.							ent kinds of rning to real			
PO 5	Ability to evaluarguments of oth	uate the reliability and releases; analyse and synthesis dates and synthesis dates and synthesis dates are specific to the synthesis dates are specific to the synthesis and synthesis are specific to the synthesynthes	evance o ata from a	f evi varie	dence;identify ety of sources;	v logical f ; draw vali	laws an d conclu	d h sion	oles in the setc.,		
PO 6	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypothese etc.,						synthesizing hypotheses				
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.						inated effort se and work				
PO 8	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.										
PO 9	Critical sensibili	ty to lived experiences, with	self awar	eness	and reflexivi	ty of both	self and	soci	ety.		
PO 10	Capability to us variety of releva	e ICT in a variety of learni nt information sources; and u	ing situat use appro	ions,c priate	lemonstrate a software for	bility to ac analysis of	ccess, va data.	luat	e, and use a		
PO 11	Ability to work through to comp	independently, identify appril	ropriate r	esour	ces required f	for a proje	ct, and n	nana	age a project		

ISO 9001:2008

www.tuv.com ID 9105078407

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students gain the knowledge of preparation, properties and uses of some important d-block metal
	Compounds
CO 2	Students know different types of hydrides, preparation, properties and its uses.
CO 3	Students study about preparation, properties and uses of alcohols, phenols and aromatic hydrocarbons
CO 4	Students learn about preparation, properties of aldehydes, ketones and some naming reactions
CO 5	Students able to study about the thermodynamic terms and laws.
Pre-requisites	

Knowledge Levels													
1.Rememb	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing												
(2)	CO/PO/	KL Mapping	• `										
(3/2	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)												
COs	KLs	POs	KLs										
CO 1	2	PO 1	2										
	2	PO 2	1										
CO 2	1												
		PO 3	5										
CO 3	3	PO 4	5										
	5	PO 5	4										
CO 4	6	PO 6	6										
		PO 7	2										
CO 5	5												
	_	PO 8	4										
PSOs	KLs	PO 9	1										
	-	PO 10	3										
PSO 1	3												
	_	PO 11	3										
		PO 12	2										
PSO 2	4	DO 12	1										
		PO 13	1										
PSO 3	1	PO 14	6										
1503	1	PO 15	3										

	<b>CO / PO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)														
60	PROGRAMME OUTCOME (POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

CO / PSO Mapping											
	(3/2/1 indication (3/2))))))))))))))))))))))))))))))))))))	ates the strength of con	rrelation, 3-strong, 2-n	nedium, 1-weak)							
CO.		Programme Specific Outcome (PSOs)									
COs	CO1	CO2	CO3	CO4	CO5						
PSO1	2	1	3	1	1						
PSO2	1	1	2	1	2						
PSO3	2	3	1	1	1						

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End Semester Examinations
Indirect
1. Course End Delivery

Content of the Syllabus										
	Transition elementsPeriods12									
Unit - I	The d - block elements - Position in the periodic table - Electronic configuration- General characteristics of d - block elements. Occurrence - extraction, properties and uses of Mo and Pt. Important compounds of transition metals: preparation, properties and uses of Ziegler - Natta catalyst, Prussian blue, Sodium nitro prusside, Turnbull's blue, Nickel DMG complex, Wilkinson's Catalyst, KMnO4, ammonium molybdate and K2Cr2O7.									
	Hydrides	Periods	12							
Unit - II	Hydrides - Classification of hydrides - Ionic Hydrides: LiH, NaH - prepar Hydrides: Silanes - Chemistry of Mono and Disilanes - Boron hydrid structure of Diborane. Complex Hydrides: NaBH ₄ , LiAlH ₄ - structure, pre	ration, properties, es - preparation, paration, properti	uses. Covalent properties and es and uses.							

	Alcohols, Phenols and aromatic hydrocarbons	Periods	12				
Unit - III	Aliphatic alcohols: Introduction - Nomenclature - preparation, properties and distinction between 1°, 2° and 3° alcohols - Aromatic alcohols: Introduction - preparation and properties of benzyl alcohol.Phenol and its types: Introduction - acidity - preparation, properties and uses of phenol. Dihydric phenols: Introduction - preparation of catechol, resorcinol and quinol. Trihydric phenols: Introduction - preparation of pyrogallol, hydroxyquinol, phloroglucinol. Aromatic hydrocarbons: Aromaticity – Huckel's rule - Electrophilic substitution reactions in aromatic compounds (general mechanism only).						
	Carbonyl compounds	12					
Unit - IV	Introduction - structure of carbonyl compounds - Nomenclature - Preparation and properties of aldehydes and ketones. Chemical properties: Addition reactions, Reactions involving alkyl groups, reduction and oxidation reactions and some important name reactions - Haloform, Reformatsky reaction, Aldol condensation, pinacol-pinacolone rearrangement, Wittig Reaction - Chemistry of acetone and acetaldehyde.						
	Thermodynamics – I	Periods	12				
Unit - V	<ul> <li>t - V</li> <li>Thermodynamic terms - system, surrounding and boundary - homogenous and heterogeneous system - types of thermodynamic system - state of system - equilibrium and non equilibrium state - nature of work and heat - law of conservation of energy - First law of thermodynamics - Enthalpy of a system - Heat capacity of a system - work done in reversible isothermal compression - work done in reversible adiabatic expansion - Joule Thomson effect, Joule Thomson coefficient, inversion temperature - zeroth law of thermodynamics - absolute temperature scale .</li> </ul>						
	Total Periods						

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry (33rd edition), Vishal publishing co., (2017).
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (47th edition) Vishal publishing co., (2017).
3	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (22nd edition), New Delhi, S. Chand & Co., (2016).
References	
1	Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn& Bacon Ltd., (1992).
2	Madan.R.D., Inorganic Chemistry (3rd edition), New Delhi, S. Chand and Co., (2012).
3	Mukherji.S.M, Singh.S.P, Kapoor.R.P, Organic Chemistry volume I (4thedition)New Age International (p) limited(1998).
E-References	
1	https://www.askiitians.com/iit-jee-chemistry/inorganic-chemistry/hydrogen /hydrides .html

2	nsdl.niscair.res.in/jspui/bitstream/123456789/778/1/Revised%20 thermodynamics.pdf
3	https://www.askiitians.com/iit-jee-chemistry/organic-chemistry/carbonyl-compounds/aldehydes-and-
	ketone s/chemical-properties-of-aldehydes-and-ketones.html

HOUSE ENONEMUCH	VIVEKAN	N	TUVRheinland CERTIFIED Www.luv.com 10 3105078407						
Programme	B.Sc	Programme Code		U	ations	2018-2019			
Department		Chemistry			Semester	•		3	
Course Code	(	Course Name	] pe	Periods er Week	Credit		Maximu	um Marks	
			L	Р	С	CA	ESI	E Total	
18U3CHA01		Allied Chemistry – I (Botany/Zoology)	5	0	5	25	75	100	
COURSE OBJECTIVES	To impart know prepare students of practical chen	ledge in formation of mole for a carrier in chemical inc nistry.	cule f lustrie	from atoms and To	ms and vario acquire basi	us organic c knowledg	reaction e in func	mechanism, To lamental aspects	
POs		PROGRAM	име	OUTCO	OME				
PO 1	Capable of dem form a part of an	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme ofstudy.							
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,								
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,								
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.								
PO 5	Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesis data from a variety of sources; draw valid conclusionsetc.,								
PO 6	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,								
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.								
PO 8	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.								
PO 9	Critical sensibili	ty to lived experiences, with	self a	wareness	and reflexivi	ity of both s	self and s	society.	
PO 10	Capability to us variety of releva	e ICT in a variety of learni nt information sources; and u	ng sit 1se ap	tuations, o propriate	lemonstrate a software for	bility to ac analysis of	cess, val data.	luate, and use a	
PO 11	Ability to work through to comp	independently, identify appril	ropria	te resour	ces required	for a projec	et, and m	nanage a project	

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students learn about bonding, anti bonding, non bonding and Interhalogen compounds.
CO 2	Students acquire knowledge about the fundamental concepts of acid and base and to determine the hardness
	of water.
CO 3	Students able to apply the knowledge to prepare various concentration of solution.
CO 4	Students understand about the various antibiotics and drugs.
CO 5	Students evaluate the characteristics of soil, fertilizers and pesticides.
Pre-requisites	

Knowledge Levels						
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing						
(3/2	<b>CO / PO / KL Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
Cos	KLs	POs	KLs			
CO 1	5	PO 1	2			
		PO 2	1			
CO 2	2	PO 3	5			
	2	PO 4	5			
03	3	PO 5	4			
CO 4	4	PO 6	6			
		PO 7	2			
CO 5	2		4			
		PO 8	4			
PSOs	KLs	PO 9	1			
		PO 10	3			
PSO 1	3	PO 11	3			
		PO 12	2			
PSO 2	4					
1502	+	PO 13	1			
	1	PO 14	6			
P30 3	1	PO 15	3			

<b>CO / PO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
66								PRO	GRAM	IME O	UTCON	ME (PC	s)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2

CO / PSO Mapping							
	(3/2/1 indica	ates the strength of con	rrelation, 3-strong, 2-r	nedium, 1-weak)			
	Programme Specific Outcome (POs)						
COs	CO1	CO2	CO3	CO4	CO5		
PSO1	1	2	3	2	2		
PSO2	2	1	2	3	1		
PSO3	1	2	1	1	2		

Course Assessment Methods				
Direct				
1. Continuous Assessment Test I, II & Model				
2. Assignment				
3. End SemesterExaminations				
Indirect				
1. Course End Delivery				

Content of the Syllabus								
	Chemical bonding and Aromaticity	Periods	12					
Unit - I	Chemical Bonding Definition types Ionic bond and covalent bond, characteristics properties -bond order- magnetic properties. Structure of N H ₂ , O ₂ , N ₂ using MO theory -bonding -bond order- magnetiic properties. Examples.	hydrogen bond NaCl, CaF ₂ . MO th Aromaticity -Huo	-formation and heory-bonding in ckels rule-types -					
	Acid and Base theory	Periods	12					
Unit - II	Arrhenius concept - Lowry-bronsted theory -Lewis acid and base the Strength of an Acid and base. Principle and Classification of Hard aci HSAB. Acidity of water - Alkalinity-PH -hardness of water- types of ha process.	ory - Conjugated d and Base -Soft ardness - methods	Acid and base- Acid and base- RO and Zeolite					

	Volumetric analysis	Periods	12					
Unit - III	Law of Volumetric analysis-Definitions of molarity, molality, normality and mole fraction. Titration-Back titration-Equivalence point-Indicator - Standard solution - Primary and secondary standards- Types of titrations- Acid-base and redox.							
	Pharmaceutical Chemistry-I	Periods	12					
Unit - IV	Definition of the terms - Drug, Pharmacy, Pharmacophore, Pharmacodynamics and Pharmacopoeia. Antibiotics - Definition, classification - broad and narrow spectrum antibiotics. penicillin, chloramphenical and erythromycin - structure and uses -structure elucidation not needed. Sulpha drugs-preparation of sulphaguanine and sulphathiazole. Mechanism and mode of action of sulpha drugs.							
	AgriculturalChemistry	Periods	12					
Unit - V Soil types-red soil, black soil, alluvial soil, desert soil, red soil; role of humus: Manures and their importance. Chemical fertilizers- Natural and synthetic fertilizers: Classification of NPK fertilizer- Preparation of Urea, Ammonium sulphate, Triple super phosphate potassium nitrate; role of macronutrients and micronutrients. Pesticides- classification-insecticides, herbicides and fungicides- Structure of important pesticides: DDT, BHC.								
	60							

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry (33rd edition), Vishal publishing co., (2017).
2	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, New Delhi, S. Chand & Co., (2008).
3	Sharma B.K., Industrial chemistry including chemical engineering (16th), Meerut, Krishnaprakasam media., (2011).
4	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (22nd edition), New Delhi, S. Chand & Co., (2016).
5	Dr.R.D.Madan, Modern inorganic chemistry,(3rd edition), New Delhi,S. Chand & Co., (2014).
References	·
1	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry , 47th edition, Vishal publishing co., 2017.
2	Jayashree Ghosh, Text Book of Pharmaceutical Chemistry, S. Chand, New Delhi, 1999.
3	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry , 50th edition, New Delhi, S. Chand & Co., 2011.
<b>E-References</b>	·
1	www.sparknotes.com/chemistry/bonding/molecularorbital/section1.rhtm

2	www.organic-chemistry.org/namedreactions/nucleophilic-substitution-sn1-sn2.shtm
3	www.soest.hawaii.edu/oceanography/courses/OCN633/Fall%202013/Titrimetry.pdf
4	chem.libretexts.org/

HOREL ENERGY	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	B.Sc	Programme Code	UCH Regulations 20						2018-2019
Department		Chemistry			Semest	er			3
Course Code	С	Course Name	l pe	Periods r Week	Credit		Maxim	mum Marks	
			L	Р	С	CA	ES	SE 1	Fotal
18U3CHA03		Allied Chemistry – I (Physics)	5	0	5	25	75		100
COURSE OBJECTIVES	To provide a bro with a molecular To expose the stu	ad foundation in chemistry to perspective. adents to a breadth of experi	that st menta	resses s	cientific reas	oning and an strumentation	nalytical	pro	blem solving
POs		PROGRAM	MME	OUTC	OME				
PO 1	Capable of demo form a part of an	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme ofstudy.							
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,								
PO 3	Capability to ap claims, beliefs or	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,							
PO 4	Capacity to extra non-familiar pro- life situations.	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.							
PO 5	Ability to evalu arguments of oth	Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesis data from a variety of sources; draw valid conclusionsetc.,							
PO 6	A sense of inqu and articulating; etc.,	iry and capability for askin Ability to recognise cause-a	g rele ind-ef	vant/apj fect rela	propriate que tionships, de	estions, prob fine problen	lematisi 1s, form	ng, ulate	synthesizing e hypotheses
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.								
PO 8	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.								
PO 9	Critical sensibilit	ty to lived experiences, with	self a	warenes	s and reflexi	vity of both	self and	soci	ety.
PO 10	Capability to use variety of relevan	Capability to use ICT in a variety of learning situations, demonstrate ability to access, valuate, and use a variety of relevant information sources; and use appropriate software for analysis of data.							
PO 11	Ability to work through to comp	independently, identify appr letion.	ropria	te resou	rces required	l for a proje	ct, and 1	man	age a project
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,								

PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students will be known molecular orbital theory and types of interhalogens.
CO 2	Students can understand organic reactions and types of hybridization
CO 3	Students will be enhanced their knowledge towards electrolysis, conductance and buffer solutions.
CO 4	Students will learn the basics of pharmaceutical chemistry.
CO 5	Students will gain knowledge about corrosion and its preventive methods.
Pre-requisites	

#### **Knowledge Levels**

#### 1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing

## CO / PO / KL Mapping

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

Cos	KLs	POs	KLs
CO 1	4	PO 1	2
		PO 2	1
CO 2	2		
		PO 3	5
CO 3	5	PO 4	5
		PO 5	4
CO 4	6	PO 6	6
		PO 7	2
CO 5	3		
		PO 8	4
PSOs	KLs	PO 9	1
		PO 10	3
PSO 1	3		
		PO 11	3
		PO 12	2
PSO 2	4		
		PO 13	l
PSO 3	1	PO 14	6
1505		PO 15	3

CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
GO				]	PROG	RAMN	IE OU	тсом	IE (PO	s)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO4	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1
CO5	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3

CO / PSO Mapping							
	(3/2/1 indic	ates the strength of con	rrelation, 3-strong, 2-n	nedium, 1-weak)			
<u>co</u>			Programme Sp	pecific Outcome (POs	s)		
COs	CO1	CO2	CO3	CO4	CO5		
PSO1	2	2	1	1	3		
PSO2	3	1	2	1	2		
PSO3	1	2	1	1	1		

Course Assessment Methods				
Direct				
1. Continuous Assessment Test I, II & Model				
2. Assignment				
3. End SemesterExaminations				
Indirect				
1. Course End Delivery				

Content of the Syllabus									
	Covalent bonding	Periods	1 2						
Unit - I	Covalent bond-Hybridization-Definition -Salient features-VSEPR theory - Shapes of inorganic molecules such as BF ₃ , H ₂ O, NH ₃ ,ClF ₃ and XeF ₂ . Molecular orbital theory - Postulates-bonding,anti bonding an non-bonding molecular orbital-Bond order-MO diagram for H ₂ , He ₂ ,N ₂ ,O ₂ ,F ₂ ,NO and CO								
	Organic Reactions	Periods	12						
Unit - II	Classification of reactions-substitution,addition,elimination rea polymerization and condensation definition with examples.Hybri acetylene.Aromaticit Huckels rule.Electrophilic substitution reactions nitration,sulphonation,halogenation and alkylation	ctions-explanation idization in me s in benzene -	n.Isomerization, ethane,ethylene, Mechanism of						

	Electrochemistry-I	Periods	12						
	Electrolytic conduction-Faradays law of electrolysis-Conductance of electrolytes-Specific conductance, equivalent conductance, molar conductance-variation of molar conductance with dilution - Kohlrausch law and its application-Conductometric titrations-Ostwald dilution law-pH definition								
Unit - III	Common ion Effec-Buffer solutions - Definition -Henderson equation -Derivation-Indicators-Acid-base Indicators								
	Pharmaceutical Chemistry-I	Periods	12						
Unit - IV	Antibiotics-Definition, classification - broad and narrow spectrum antibiotics. penicillin, chloramphenical and erythromycin-structure and mode of action structure elucidation not needed. Sulpha drugs - preparation of sulphaguanidine, sulphapyridine and sulphathiazole. Mechanism and mode of action of sulpha drugs								
	Applied Chemistry-I	Periods	12						
Unit - V	Corrosion-Types of corrosion - Dry and Wet corrosion definition only-Prevention of corrosion by electroplating. Paints - Requirements of good paint- constituents of paints and their functions- manufacture of paints -special paints: luminescent fire retardant and heat resistant paints. Varnishes -Constituents, characteristics of good varnish, types and uses.								
	Total Periods		30						

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry 33rd edition, Vishal publishing co., 2017.
2	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, 22nd edition, New Delhi S. Chand & Co., 2016.
3	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry , 47th edition, Vishal publishing co., 2017.
References	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry 50th edition, New Delhi, S. Chand &Co.,2011.
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry 23rd edition, New Delhi, S. Chand &Co., 2004.
<b>E-References</b>	
1	https://chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Chemical_Bonding/Molecular_Or bital_Theory/MO_bonding_in_F2_and_O2.
2	https://www.cliffsnotes.com/study-guides/chemistry/organic-chemistry-ii/reactions-of-aromatic-compou ds/electrophilic-aromatic-substitution-reactions

TOPEL EXPORTMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							
Programme	B.Sc Programme Code UCH Regulations							2018-2019
Department		Chemistry			Semester			3
Course Code	С	Course Name	P per	eriods Week	Credit		Maximu	ım Marks
			L	P	C	CA	ES	E Total
18U3CHN01	<b>T</b> 1 1 1	Industrial Chemistry	3	0	5	25	75	100
COURSE OBJECTIVES	of different types products	sTo enable the students to le	Fo und earn al	out the	preparation a	nd importa	nce of v	gents and glass various industrial
POs	PROGRAMME OUTCOME							
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme ofstudy.							
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,							
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,							
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.							
PO 5	Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesis data from a variety of sources; draw valid conclusionsetc.,							
PO 6	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,							
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.							
PO 8	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.							
PO 9	Critical sensibilit	ty to lived experiences, with	self av	vareness	and reflexivi	ty of both s	self and	society.
PO 10	Capability to use ICT in a variety of learning situations, demonstrate ability to access, valuate, and use a variety of relevant information sources; and use appropriate software for analysis of data.							

PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students will be known the various methods involved in water quality analysis
CO 2	Students canunderstandthe manufacture f soap and detergents.
CO 3	Students will be enhanced their knowledge towards manufacture of glass.
CO 4	Students will learn the basic concepts involved in lubricants.Students will gain knowledge about petroleum
	products
CO 5	Students will learn how to conduct a volumetric estimation process precisely
Pre-requisites	

Knowledge Levels							
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing							
CO / PO / KL Mapping							
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	KLs	POs	KLs				
CO 1	2	PO 1	2				
	2		1				
CO 2	2	PO 3	5				
	3	PO 4	5				
CO 3		PO 5	4				
CO 4	4	PO 6	6				
		PO 7	2				
CO 5	4						
		PO 8	4				
PSOs	KLs	PO 9	1				
		PO 10	3				
PSO 1	3						
1501		PO 11	3				
		PO 12	2				
PSO 2	4	PO 13	1				
	1	PO 14	6				
PSO 3	1	PO 15	3				

<b>CO / PO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
C O		PROGRAMME OUTCOME (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

CO / PSO Mapping								
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
<u>co</u>	Programme Specific Outcome (POs)							
COs	CO1	CO2	CO3	CO4	CO5			
PSO1	2	2	3	2	2			
PSO2	1	1	2	3	3			
PSO3	2	2	1	1	1			

Course Assessment Methods				
Direct				
1. Continuous Assessment Test I, II & Model				
2. Assignment				
3. End SemesterExaminations				
Indirect				
1. Course End Delivery				

Content of the Syllabus										
	Water chemistry- IPeriods6									
Unit - I	Examination of water quality by chemical and physical examination of water: colour - turbidity - odour-taste-temperature-pH-electrical conductivity-suspended solids - dissolved solids - acidity-total acidity-alkalinity - free CO ₂ - dissolved O ₂ -free chlorine-chlorine demand - BOD -COD.									
Unit - II	Soaps and detergents	Periods	6							
	Soaps:manufacture-toilet and transparent soap -metal soaps,cleansing action of soap. Detergents:Manufacture of synthetic detergents-anionic detergents-cationic detergents and amphoteric detergents									
	Glass industry	Periods	6							
Unit - III	re: formation of ll	oatch d glass								
Unit - IV	Lubricants	6								
-----------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---	----	--	--	--	--			
	Definition-functions - properties - viscosity index-pour point - cloud point - classification - addi lubricants- grease-solid lubrication-emulsions									
Unit - V	Petroleum and Petrochemicals	6								
	Cracking - mechanism, changes occurring during cracking - types - applications - synthetic petrol - Hydrogenation of coal Bergius process - Fischer tropsch process - knocking and anti knocking agents - octane number									
	Total Periods		30							

Text Books	
1	Industrial chemistry by B.N.Chakrabarty, Oxford and IBH publishing Co, NewDelhi,1981.
2	Industrial chemistry by B.K.Sharma, Goel Publishing House, Meerut.
4	
References	
1	College Industrial chemistry by P.P.Singhn, T.M.Joseph, R.G.Dhanvale, Himalaya Publishing house,
	Bombay 4th edition, 1983
2	Applied chemistry by Jayashree Ghosh, S.Chand Publication Reprint 2013
<b>E-References</b>	
1	https://www.scribd.com/document/274281762/Water-Technology-Ppt
2	nptel.ac.in/courses/103107082/module6/lecture5/lecture5.pd

Signature of BOS Chairman

STIONAL INS	VIVEKAN	ANDHA COLLEGE OF A	RTS	AND S	CIENCES	FOR WOM	EN		150 9001:2008
		(AUTON) Elavampalayam Tir	OMC	DUS)	37 205			Т	URheinland CERTIFIED
NONEN EMPOWERMENT	Liayamparayam, Truchengode-037 205.								
Programme	B.Sc	Programme Code		U	СН	Regu	lations		2018-2019
Department		Chemistry			Seme	ster			3
Course Code	0	Course Name	]	Periods	Credit		Maxim	um	Marks
			L pe	P	С	CA	ES	SE	Total
18U3CHN02		Medicinal Chemistry	3	0	2	25	75		100
COURSE	1. To study the sy	ystem of Indianmedicines							<u> </u>
OBJECTIVES	2. To learn the in 3. To prepare and	portance and evaluation of c l analyse thedrugs.	lrugs.						
POs		PROGRAM	ИМЕ	OUTC	OME				
PO 1	Capable of dem form a part of an	onstrating comprehensive k undergraduate programme o	nowle ofstud	edge and y.	l understar	iding of one	or more	dis	sciplines that
PO 2	Ability to expre appropriate med	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,							
PO 3	Capability to ap claims, beliefs of	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,							
PO 4	Capacity to extra non-familiar pro life situations.	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.							
PO 5	Ability to evaluarguments of oth	Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesis data from a variety of sources; draw valid conclusionsetc.,							
PO 6	A sense of inqu and articulating; etc.,	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,							
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.								
PO 8	Ability to analysideas, evidence a	Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.							
PO 9	Critical sensibili	ty to lived experiences, with	self a	warenes	s and reflex	kivity of both	self and	soc	viety.
PO 10	Capability to us variety of releva	e ICT in a variety of learni nt information sources; and u	ng sit 1se ap	uations, propriat	demonstrat e software	e ability to a for analysis o	ccess, v f data.	alua	ate, and use a
PO 11	Ability to work through to comp	independently, identify appril	ropria	te resou	rces requir	ed for a proje	ect, and	mai	nage a project

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students known the systems of Indian medicines
CO 2	Students able to understand the drugs.
CO 3	Students enhanced their knowledge towards preparation of drugs.
CO 4	Students learn the importance of medicinal plants.
CO 5	Students know to analyse the drug and its quality.
Pre-requisites	

	Know	ledge Levels			
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing					
(3/2	<b>CO / PO</b>	/ KL Mapping	rook)		
(3/2) COs		POs	KI s		
003					
CO 1	2	PO I	2		
	2	PO 2	1		
CO 2	2	PO 3	5		
		105	5		
CO 3	3	PO 4	5		
		PO 5	4		
CO 4	4	PO 6	6		
		PO 7	2		
CO 5	4				
000		PO 8	4		
PSOs	KLs	PO 9	1		
1503		PO 10	3		
	3				
PSO I		PO 11	3		
		PO 12	2		
	4				
PSO 2		PO 13	1		
	1	PO 14	6		
PSO 3	-	PO 15	3		

		(3/2	/1 indic	cates the	e streng	CO/	PO Ma orrelati	on, 3-s	trong, 2	2-mediu	m, 1-we	eak)			
C O								PROG	RAM	ME OU	тсом	E (POs	;)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

<b>CO / PSO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
			Programme Spo	ecific Outcome (POs)	)
COs	CO1	CO2	CO3	CO4	CO5
PSO1	2	2	3	2	2
PSO2	1	1	2	3	3
PSO3	2	2	1	1	1

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End SemesterExaminations
Indirect
1. Course End Delivery

	Content of the Syllabus		
	Introduction to Pharmacognosy	Periods	6
Unit - I	History, Definition and scope of pharmacognosy; Systems of Indian Medi Homeopathy; Terminologies.	icines - Siddha, U	nani, Ayurveda,
Unit - II	Classification of drugs	Periods	6
	Classification of Crude drugs - Taxonomical, Morphological, Pharmacolo Chemistry of drugs and its evaluation.	gical and chemic	al classifications;
	Preparation and Application of Drugs	Periods	6
Unit - III	Preparation of crude and commercial drugs. Making infusion, decoction, suppositories, tincture, making herbal syrups, compresses, poultice, plaste herbal salves. Surgical fibres, sutures and dressing.	lotion, washers, in ers, oinments, herl	nsect repellents, pal oils and

	Plants as Drugs	Periods	6			
Unit - IV Organoleptic study of the following medicinal plants: Fruit - Amla, Bulb - Garlic, Rhizome - Ging castor, Bark - Cinchona, Leaves - Neem, Flower - Clove.						
	Analytical Studies	6				
Unit - V	Analytical Pharmacognosy - drug adultration and detection. Biological testing of herbal drug. Phytochemical investigations with reference to secondary metabolites of locally available medicinal plants					
	Total Periods		30			

Text Books	
1	S.Lakshmi, Pharmaceutical Chemistry, S.Chand & Sons ,New Delhi,2004.
2	V.K.Ahluwalia and Madhu Chopra, Medicinal Chemistry ,Ane Books,New Delhi,Reprint 2009.
3	Industrial chemistry by B.N.Chakrabarty, Oxford and IBH publishingCo,NewDelhi, 1981.
4	Industrial chemistry by B.K.Sharma, Goel Publishing House, Meerut.
References	
1	Pharmacognosy, S.B.Gokhale, Dr.C.K. Kokate, A.P. Purohit, Publisher: Nirali Prakasham, Pune, 2002
2	Herbs that Heal, Acharya Vipul Rao – Diamond Pocket Books, New Delhi, 2005
3	Practical Pharmacognosy. Dr.C.K. Kokate et al. 2003
4	An Introduction to Medicinal Botany and Pharmacognosy – N.C. Kumar, Emkay Publications, New
	Delhi, 2004.
<b>E-References</b>	
1	https://www.docsity.com/en/classification-of-crude-drugs/2147112/
2	https://link.springer.com/content/pdf/10.1007%2F978-3-319-63862-1.pdf

Signature of BOS Chairman

CHIONAL INSTA	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN							150 9001:2008		
0+3	(AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									
HOMEN EMPOWERNEN		Diagampangan, machengoad 057 2000								
Programme	B.Sc	Programme Code		U	CH	Regul	ations	2018-2019		
Department		Chemistry	<u> </u>		Semester			3		
Course Code	C	Course Name	H	Periods	Credit		Maxim	um Marks		
				r Week	C	CA	ES	SE Total		
18U3CHN03		Water Quality Analysis	3	0	2	25	75	100		
COURSE OBJECTIVES	1. To study the ch 2. To learn the im	naracteristics of water portance of water purification quality measurement about w	on vater	II	L	-	I	l		
POs	5.10 anaryse me.	PROGE	RAM	ME OU	ГСОМЕ					
PO 1	Capable of demo form a part of an	onstrating comprehensive k undergraduate programme o	nowle	dge and y.	understandin	ig of one o	or more	disciplines that		
PO 2	Ability to expre appropriate medi	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,								
PO 3	Capability to ap claims, beliefs or	ply analytic thought to a b the basis of empirical evide	oody ence; i	of know	'ledge;analyse relevant assun	and evalu	ate evie mplicati	dence,arguments ions etc.,		
PO 4	Capacity to extra non-familiar pro- life situations.	apolate from what one has le blems, rather than replicate of	arned	and app ulum co	bly their comp	etencies to lge; and app	solve d	lifferent kinds of learning to rea		
PO 5	Ability to evalu arguments of oth	ate the reliability and releases; analyse and synthesis da	evance ata fro	e of evi mavari	dence;identify ety of sources	y logical f ; draw valie	laws ar d conclu	nd holes in the usionsetc.,		
PO 6	A sense of inqu and articulating; etc.,	iry and capability for asking Ability to recognise cause-a	g rele ind-ef	vant/app fect rela	ropriate quest tionships, defi	tions, probl ne problem	lematisi 1s, form	ng, synthesizing ulate hypotheses		
PO 7	Ability to work on the part of a efficiently as a m	effectively and respectfully group, and act together as a nember of a team.	with c group	liverse to or a tea	eams; facilitat	e cooperati rests of a co	ve or co ommon	cause and work		
PO 8	Ability to analys ideas, evidence a	e, interpret and draw conclu and experiences from an oper	isions n-min	from qu ded and	antitative/qua	litative data	a; and c	ritically evaluat		
PO 9	Critical sensibili	ty to lived experiences, with	self a	warenes	s and reflexivi	ity of both s	self and	society.		
PO 10	Capability to use variety of relevan	e ICT in a variety of learni nt information sources; and u	ng sit 1se ap	uations, propriate	demonstrate a software for	bility to ac analysis of	cess, va data.	aluate, and use		
PO 11	Ability to work through to comp	independently, identify appr letion.	copriat	te resour	ces required	for a projec	ct, and i	manage a projec		

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students knew the various sources of water.
CO 2	Students able to understand the importance of various water quality parameters.
CO 3	Students able to determine the hardness of water.
CO 4	Students knowledge on sources, analysis and control methods of industrial waste water .
CO 5	Students learn how to treat polluted water.
Pre-requisites	

Knowledge Levels									
1.Rememb	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing								
	<b>CO / PO</b>	/ KL Mapping							
(3/2	/1 indicates the strength of con	rrelation, 3-strong, 2-medium, 1-w	veak)						
COs	KLs	POs	KLs						
CO 1	2	PO 1	2						
		PO 2	1						
CO 2	2								
		PO 3	5						
CO 3	5	PO 4	5						
03		PO 5	4						
CO 4	3	PO 6	6						
		PO 7	2						
CO 5	4								
		PO 8	4						
PSOs	KLs	PO 9	1						
		PO 10	3						
PSO 1	3								
1501		PO 11	3						
		PO 12	2						
PSO 2	4								
		PO 13	1						
BSO 3	1	PO 14	6						
P30 3		PO 15	3						

CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
COs	PROGRAMME OUTCOME (POs)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO4	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

CO / PSO Mapping										
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
<u>co</u>		Programme Specific Outcome (POs)								
COs	CO1	CO2	CO3	CO4	CO5					
PSO1	2	2	1	3	2					
PSO2	1	1	2	2	3					
PSO3	2	2	1	1	1					

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model					
2. Assignment					
3. End SemesterExaminations					
Indirect					
1. Course End Delivery					

Content of the Syllabus								
	Introduction to Hydrology	Periods	6					
Unit - I	World water resource; water resources of India- Different ecosysytem of hydrology- Riverine, Estuarine and marine-Status of water quality in India.							
	Characteristics of Water	Periods	6					
Unit - II	Water quality parameters and their interaction-physical and chemical characteristics- colour, odour, taste, turbidity, temperature-chemical constituents- electrical conductivity - suspended solids - dissolved solids - acidity - total acidity - alkalinity - pH - free CO2 - dissolved O2 - free chlorine - chlorine demand.							
	Water Treatment	Periods	6					

Unit - III	Water composition analysis - Hardness of water- Type of Hardness-Determination of hardness by EDTA method, Removal of hardness-Zeolite process, demineralization and Reverse osmosis - Salinity - ionic comPosition - Minerals-pollutants- BOD, COD- Water quality standard - ISI, EPA, WHO.						
	Industrial Water Pollution, Its Control & Analysis	Periods	6				
Unit - IVSources of water pollution - domestic - industrial - agricultural - soil and radioactive wastes as s pollution. Water pollutants and their effects. Heavy metal pollution-public health significance of Ca Chromium - Copper - Lead - Zinc - Manganese. Prevention and control its measures.							
	Industrial Waste Water Treatment	6					
Unit - V	Aerobic treatment; Suspended growth aerobic treatment processes; Activated sludge process and its modifications; Attached growth aerobic processes; Tricking filters and Rotating biological contactors; Anaerobic treatment; suspended growth, attached growth, fluidized bed and sludge blanket systems; nitrification, denitrification; Phosphorus removal.						
Total Periods							

Text Books	
1	B. K. Sharma, Industrial Chemistry; 8th Ed., Goel Publishing House, New Delhi, 1997.
2	B.K. Sharma and H. Kaur, "Environmental chemistry", Goel Publishing House, Meerut, 2008
3	Industrial chemistry by B.N.Chakrabarty, Oxford and IBH publishing Co, NewDelhi, 1981.
4	Industrial chemistry by B.K.Sharma, Goel Publishing House, Meerut.
References	
1	Chemical Process Industries Norrish Shreve, R. and Joseph A. Brink Jr. McGraw Hill, Industrial Book Company, London.
2	Production and Properties of Industrial Chemicals "Brain A.C.S. Reinhold" NewYork.
3	Outlines of Chemical Technology "For the 21st Century M. Gopala Rao & Matshall Sittig (3rd Edition)
4	College Industrial chemistry by P.P.Singhn, T.M.Joseph, R.G.Dhanvale, Himalaya Publishing house, Bombay 4th edition, 1983.
5	Applied chemistry by Jayashree Ghosh, S.Chand Publication Reprint 2013
E-References	•
1	https://www.cdc.gov/healthywater/drinking/public/water_treatment.html
2	https://www.hunterwater.com.au

## **QP CODE-18U3CHC03**

# VIVEKANANDHA COLLEGE OF ARTS & SCIENCES FOR WOMEN (AUTONOMOUS)

#### **DEPARTMENT OF CHEMISTRY**

#### **B.Sc. DEGREE EXAMINATION**

#### **III-SEMESTER**

## **MODEL QUESTION- GENERAL CHEMISTRY – III**

Time: 3 Hrs.

Max.Marks: 75

### Section A Answer all questions (20 x 1 = 20)

1	Whi	ch of the following has d ⁵ con	nfigurat	ion?	K1	CO-1
	A	Fe	B	Cr		
	C	Sc	D	Ti		
2	In d-	block elements, the last electr	ronente	rsinto orbital	K2	CO-1
	Α	S	B	р		
	C	d	D	f		
3	Whi	ch of the following is a diama	Ignetic	ion?	K2	CO-1
	A	Co ²⁺	В	Cu ²⁺		
	C	Mn ²⁺	D	Sc ³⁺		
4	Zn d	loes not show variable valency	y becau	ise of	K2	CO-1
	A	complete d sub shell	В	inert pair effect		
	C	4s ² sub shell	D	none of these		
5	Whi	ch has the reducing property?	••••••	<u> </u>	K2	CO-2
	Α	03	В	OsO ₄		
	C	LiAlH ₄	D	HNO ₃		
6	In h	ydrides, the oxidation state of	hydrog	gen is	K1	CO-2
	Α	1	В	0		
	C	-1	D	-2		
7	Dibo	prane contains	I		K1	CO-2

	A	3c-2e bond	В	2c-2e bond		
	C	3c-3e bond	D	none of these		
8	Alke	nes can be reduced by			K1	CO-2
	Α	03	В	NaBH ₄		
	C	LiAlH ₄	D	HNO ₃		
	XX 71 ·				IZ 1	00.2
9	Whit	ch of the following is acidic in n	atur	e?	KI	CO-3
	A	CH ₃ OH	В	C ₆ H ₅ OH		
	C	CH ₄	D	НСНО		
10	Whic	ch of the following not obeys Hu	ıcke	l's rule?	K1	CO-3
	A	benzene	В	naphthalene		
	С	acetic acid	D	cyclopentadienyl anion		
11	The preci	reaction between phenol and bro pitate. It is due to	min	e in the formation of white	K1	CO-3
	A	2-bromophenol	В	4-bromophenol		
	C	2,4,6-tribromophenol	D	None of these		
12	Whic	ch of the following give alkenes	on o	oxidation?	K1	CO-3
	A	CH ₃ OH	В	CH ₃ CH ₂ OH		
	С	(CH ₃ ) ₂ CHOH	D	(CH ₃ ) ₃ COH		
13	The	oxidation of primary alcohol giv	es		K1	CO-4
	Α	aldehyde	В	ketone		
	C	both a & b	D	none		
14	The o	carbonyl carbon is	.i	i	K1	CO-4
	A	electrophilic	В	nucleophilic		
	С	non polar	D	none		
15	Whic	ch of the following does not give	e pos	sitive test for haloform reaction?	<b>K</b> 1	CO-4
	Α	acetaldehyde	В	acetone		
	C	2-butanone	D	3-hexanone		
16	A str	ong base can abstract an $\alpha$ -hydr	oger	n from	K1	CO-4

	Α	amine	B	alkane		
	С	alkene	D	ketone		
17	Whic	ch of the following is true for a c	lose	ed system?	K1	CO-5
		,				
	A	mass entering = mass leaving	B	mass does not enter or leave the		
				System		
	C	mass entering can be more or	D	none of the mentioned		
		less than the mass leaving				
18	The j	processes or systems that do not	invo	olve heat are called	K1	CO-5
	Α	isothermal processes	В	equilibrium processes		
				oquinerium processes		
	C	thermal processes	D	adiabatic processes		
19	The	e law of thermodynamics	stat	tes that energy can neither becreated	K1	CO-5
	nor d	lestroyed	_			
	A	1	В	11		
	C	III	D	ZERO		
20	Heat	andwork are functions	r	1	K1	CO-5
	A	state	B	path		
	C	point	D	none		
		Sec	ction	$B_{\rm MB}(5 \times 5 - 25)$		
21	Α	Why d-block elements posses	s va	riable oxidation state?	K2	CO-1
			0	R		
	В	Write the preparation, properti	es a	nd uses of sodium nitroprusside.	K1	CO-1
				r,		
22	A	Explain the prepartion, propert	ties	of NaH.	K2	CO-2
			0	R		
	В	List out the synthetic uses of L	iAll	H4.	K3	CO-2
23	A	State and explain Huckel's rule	e		K3	CO-3
			0	R		
	В	State and explain Huckel's rule	e		K1	CO-3
24	A	How do you convert acetaldeh	yde	into 2-hydroxy butanol?	K2	CO-4
			0	R		
	В	Explain the mechanism of Ref	orm	atsky reaction.	K2	CO-4

25	Α	Write a brief note on Joule-Thomson effect.	K1	CO-5
		OR		
	В	State and explain zeroth law of thermodynamics.	K2	CO-5
	[	Section C Answer ANY THREE Questions (3 x 10 = 30)		
26		Explain in detail about the extraction of platinum.	K4	CO-1
27		Describe the structure of diborane.	K3	CO-2
28		What are the differences between 1°, 2° & 3° alcohols?	К3	CO-3
29		Discuss in detail about the chemistry of acetone.	K3	CO-4
30		Derive the expression for work done in isothermal compression and adiabatic expansion.	K4	CO-5

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	2	4	-	1	-	-	7
II	3	2	2	-	-	-	7
III	5	-	2	-	-	-	7
IV	4	2	1	-	-	-	7
V	5	1	-	1	-	-	7
Total	1	1	5	2	-	-	35
	9	0					

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	6	8	-	10	-	-	24
II	3	6	15	-	-	-	24
III	9	-	15	-	-	-	24
IV	4	1	10	-	-	-	24
		0					
V	9	5	-	10	-	-	24
Total	3	2	40	20	-	-	120
	1	9					

# QP CODE-18U3CHA01

# VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

## **DEPARTMENT OF CHEMISTRY**

### B.Sc., DEGREE EXAMINATION MODEL QUESTION- ALLIED CHEMISTRY – I (BOTANY/ZOOLOGY)

Time: 3 Hrs.

Max.Marks:75

### Section A Answer all questions (20 x 1 = 20)

1	Wł	nich of the following is example for	ion	icbond.?	<b>K</b> 1	CO-1
	Α	NaCl	В	Cl ₂		
	С	F2	D	KCl		
2	Na	Clcrystalhasa	struc	ture.	<b>K</b> 1	CO-1
	Α	Tetrahedral	B	Trigonal		
	С	Octahedral	D	hexagonal		
3	Co	valentbondinvolves	<u>.</u>	ofelectrons	K1	CO-1
	Α	Sharing	В	Transfering		
	С	Both	D	None		
4	Wł	nat is the bond order for O2molecul		K3	CO-1	
	Α	1	В	2		
	С	0	D	3		
5	Wł	nich one of the following is aromati	iccoı	npound?	K2	CO-2
	Α	Benzene	В	Alkene		
	С	Acetylene	D	chlorine		
6	pН	of an alkaline water will be	••••		K2	CO-2
	Α	Zero	В	Low		
	С	High	D	None		
7		refers to the capabilit	y of	water to neutralize abase.	K3	CO-2
	Α	Acidity	В	Alkalinity		
	С	RO	D	Zeolite		
8	На	rdness of water is due to the presen	ceof		K2	CO-2
	A	Calcium	B	Ammonium		

	C	Magnesnium	D	Sodium		
9	Giv	ve an example for primary standard	solu	tion	K2	CO-3
	Α	oxalicacid	В	NaOH		
	С	KMnO4	D	Na2S2O3		
10	Ox	alic acid Vs NaOH isanexamplefor	L	titration	K2	CO-3
	Α	Acidbase	В	Redox		
	С	Conductometric	D	Complexometric		
11	Nu	mber of Gram Equivalence per litre	e of	solution is termedas	K2	CO-3
	Α	Molefraction	В	Molality		
	С	Normality	D	Molarity		
12	The	solution whosestrengthisknownas	solution	K4	CO-3	
	Α	Primary	В	Secondary		
	С	Both	D	none		
13	The	e structural unit which is responsib	le fo	r activity of drug is termed as	K1	CO-4
	Α	Pharmacopore	В	Pharmacokinetics		
	C	Pharmacology	D	Pharma		
14		is used to killmicroorganism	K1	CO-4		
	A	Antibiotics	В	antipyrectic		
	C	analgesics	D	none		
15	Sul	phadrugscontains		group	K2	CO-4
	A	Sulphonyl	В	amine		
	C	Acid	D	aldehyde		
16	The	e firstisolatedantibioticiscalled			K2	CO-4
	A	Penicillin	В	chlorophenicol		
	C	Tetraxylene	D	sulphathiazole		
17	Giv	ve an example for nitrogenousfertil	izer.	•	K2	CO-5
	A	Urea	В	KCN		
	C	K2SO4	D	none		
18		isasubstancethatistoxictoplar	ntsus	edtodestroyunwantedvegetation.	K1	CO-5
	A	Herbicides	В	Fungicides		
	C	Rodenticide	D	all		
19		soil contain adequate amour	nt of	potash, lime and phosphoricacid.	K2	CO-5
	A	Alluvial soil	В	black soil		

	C	red soil	D	all				
20	DD	DT stands for	1		К3	CO-5		
	A	Dichlorodiphenyltrichloroethane	B	Dichlorodiphenyltrichloromethane				
	C	Dichlorodiphenylethane	D	Dichloromethyltrichloroethane				
		5	Secti	on B				
21	Α	Explain the characteristics of ionic	bon	d	K4	CO-1		
		1		OR				
	В	Draw the structure of NaCl and ex	xplai	n its nature of bonding.	К3	CO-1		
22	A	Explain Arrhenius concept of acid	land	bases.	K2	CO-2		
				OR				
	В	Write short note on conjugate acid	Write short note on conjugate acid and bases.					
23	A	Define the following terms i)Mola	K1	CO-3				
				OR				
	В	Write short notes on standard solu	K4	CO-3				
24	Α	Write the preparation for sulphage	uanii	ne and sulphathiazole	K3	CO-4		
				OR				
	В	Give an brief account on antibioti	cs.		K2	CO-4		
25	Α	Describe the different types of soi	ils		K1	CO-5		
				OR				
	В	Explain the classification of nitrog	gene	ous fertiliser with examples.	K1	CO-5		
		Sec Answer ANY THRE	ction E Q	a C uestions (3x 10 = 30)				
26		Explain the formation of covalent	bon	d with twoexamples	K3	CO-1		
27		Explain the classification of acid a	and l	bases withexamples.	<b>K</b> 1	CO-2		
28		Give an account on Acid –base ar	nd re	doxtitration.	К3	CO-3		
29		Explain the mechanism and mode	ofa	ction of sulphadrugs.?	<b>K</b> 1	CO-4		
30		Explain the classification of pestion	cides	S.	K2	CO-5		

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Rememberi	(Understanding	(Applying	(Analyzing	(Evaluating	(Creating	
	ng	)	)	)	)	)	
	)						
Ι	3	0	16	5	0	0	24
II	10	8	1	5	0	0	24
III	5	3	10	6	0	0	24
IV	12	7	5	0	0	0	24
V	11	1	1	0	0	0	24
		2					
Total	41	30	33	16	0	0	120

### QP CODE-18U3CHA03 VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) DEPARTMENT OF CHEMISTRY B.Sc., DEGREE EXAMINATION MODEL QUESTION- ALLIED CHEMISTRY – I (PHYSICS)

Time: 3 Hrs.

Max.Marks: 75

#### Section A Answer all questions (20 x 1 = 20)

1	Bonc	l order of He ₂ is			K-2	CO-1
	A	0	В	1		
	С	2	D	3		
2	Whic	ch of the following has linear sha	ape?	L	K-4	CO-1
	А	H ₂ O	В	NH ₃		
	С	CH ₄	D	ICI		
3	Whic	ch one of the following is parama	etic?	K-2	CO-1	
	Α	N ₂	В	NO		
	С	СО	D	O ₃		
4	Addi	tion overlap of atomicorbitalspre	K-1	CO-1		
	Α	antibonding	В	non bonding		
	С	bonding	D	none		
5	Whic	ch of the following has sp ² hybric	lisat	ion?	K-2	CO-2
	А	C ₂ H ₄	В	C ₂ H ₆		
	С	C ₂ H ₂	D	CH ₄		
6	An a	lkyl halide can be converted into	o alk	ene by	K-2	CO-2
	Α	substitution	В	addition		
	С	elimination	D	hydrogenation		
7	Whic	ch of the following does not obe	y Hu	ıckel's rule?.	K-4	CO-2
	А	benzene	В	naphthalene		
	C	cyclobutadiene	D	anthracene		
8	The e	electrophile involved in nitration	i rea	ction is	K-2	CO-2
	А	NO ⁺	В	NO ₂ ⁺		
	С	NO	D	NO ₂ -		

9	Elect	rolytic conduction is due to mig	on of	K-1	CO-3	
	Α	protons	В	electrons		
	С	ions	D	atoms		
10	The u	unit of equivalent conductance is	3		K-5	CO-3
	А	ohm ⁻¹ cm ²	В	ohm cm		
	С	ohm cm ²	D	none		
11	Exan	nple for an acidic buffer			K-1	CO-3
	Α	CH ₃ COOH/CH ₃ COONa	В	NH4OH/NH4Cl		
	С	NH ₃ /NH ₄ NO ₃	D	$N_2H_4/N_2H_5Br$		
12	What	t is pH+pOH =?			K-1	CO-3
	Α	4	В	12		
	С	14	D	6		
13	The 1	medicine that inhibits the growth	of	or destroys microorganisms are	K-2	CO-4
	called	d				
	Α	antibiotics	В	antipyretics		
	С	anaesthetics	D	antihistamines		
14	Whic	ch of the following is not a brack	l spe	ectrum antibiotics?	K-1	CO-4
	Α	chloramphenicol	В	tetracyline		
	С	pencillin	D	erythromycin		
15	The c	drug used to treat bacillary dyser	ntery	/ is	K-5	CO-4
	Α	sulfapyridine	В	sulfaguanidine		
	С	sulfathaizole	D	none		
16	Sulfa	drugs contain			K-2	CO-4
	Α	sulphonamide group	В	sulfide group		
	С	sulphate group	D	sulphite group		
17	Whic	ch of the following is an example	e of	corrosion?	K-5	CO-5
	Α	Rusting of iron	В	Tarnishing of silver		
	С	Liquefaction of ammonia	D	Rusting of iron and tarnishing of silver		
18	Spray	y painting is used to:		Lunanianianianianianianianianianianianiani	K-4	CO-5
	A	Apply paint without touching surface	В	Apply large amount of paint		
	С	Reach high areas	D	Get textured paint		

19	The	pigments in paints is mixed to	ments in paints is mixed to give desired							
	Α	smoothness	В	colour						
	С	appearance	D	all the above						
20	The	liquid medium uesd in oil paint	s is	i	K-1	CO-5				
	A	thinner	В	alcohol						
	C	linseed oil	D	turpentine						
		Sector Se	ection							
21	Α	<b>Answer ANY ON</b> Explain preparation, properti	E Qu es &	uses of IF ₅	K-1	CO-1				
				······································						
			((	DR)						
	В	What are the differences bet	ween	bonding & antibonding orbital?	K-4	CO-1				
22	Α	Write a note on hybridization	ethane	K-2	CO-2					
	В	Explain the mechanism of nit	Explain the mechanism of nitration in Benzene							
23	A	<ul><li>(i) Explain common ion effec</li><li>(ii) Define Ph.</li></ul>	hexamples.	K-2	CO-3					
			((	DR)						
	В	Describe Kohlrausch's law an	nd its	application	K-2	CO-3				
24	A	(i) Write a note on propertie	es & 1	ises ofpencillin.	K-1	CO-4				
		(ii) Write a note on preparat	tion &	z properties ofsulphathiazole.						
			((	DR)						
	В	(i) Describe the types of antib	iotics		K-5	CO-4				
		(ii) Write a note on properties	s, use	s ofsulphaguanidine						
25	A	Describe the types of corrosic	on an	d prevention of corrosion.	K-3	CO-5				
			))	DR)						
	В	(i) What are the requirements	s of a	goodpaint?	K-2	CO-5				
		(11) How do you prepare Varr	nshes	5? 						
		Secti Answer ANV ONE C	on C	$\log (2 - 10 - 20)$						
		Allswer AN I UNE Q	yuest	$1011 (3 \times 10 = 30)$						
26	Drav	V MO diagram for carbon mone	oxide	& F ₂ .	K-1	CO-1				
27	Wha	t is meant by aromaticity? Exp	lain tl	- ne mechanism for Halogenation	K-2	CO-2				
-,	&Fri	edal-Craft alkylation ofbenzen	e			202				
28	Expl	ain conductometric titration and	Explain conductometric titration and its types in detail. K-4 CO-3							

29	Explain the structure, properties and uses of Erythromycin.	K-5	CO-4
30	Explain (i) Paints (ii) Thinner (iii) Binder (iv) Pigments	K-3	CO-5

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	03	02	-	02	-	-	07
II	01	05	-	01	-	-	07
III	02	02	-	01	01	-	06
IV	02	02	-	-	03	-	07
V	01	02	02	02	01	-	08
Total	09	13	02	06	05	-	35

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	1	2	-	5	-	-	23
	6						
II	4	2	-		-	-	24
		0					
III	5	1	-	10	-	-	25
		0					
IV	4	1	-	-	10	-	24
		0					
V	4	1	10	-	-	-	24
		0					
Total	33	52	10	15	10	-	120

#### **QP CODE-18U3CHN01**

## VIVEKANANDHA COLLEGE OF ARTS & SCIENCES FOR WOMEN (AUTONOMOUS) DEPARTMENT OF CHEMISTRY B.Sc., DEGREE EXAMINATION - IV SEMESTER MODEL QUESTION-INDUSTRIAL CHEMISTRY – I

Time: 3 Hrs.

Max.Marks: 75

		Ansv	wer al	Il questions (75 x $1 = 75$ )			
1	Colo	our of water is meseaured by an	n instr	ument called	K1	CO-1	
	A	Centrifugation	В	Tintometer			
	C	pH meter	D	Electrometer			
2	For	the municipal water supply the	turbic	lity of water should not	K2	CO-1	
	exce						
	Α	15ppm	В	10ppm			
	C	25ppm	D	35ppm			
3	The	teeth of children appears disco	lored	due to the presence of	K2	CO-1	
	A	Fluorides	В	Chlorides			
	C	Hardness	D	All of these			
4	4						
	Α	Ortho toluidine	В	Meta toluidine			
	C	Para toluidine	D	None			
5	BOI	D means			К3	CO-1	
	Α	Basic oxygen demand	В	Biological oxygen demand			
	C	Bacterial oxygen demand	D	Bio oxygen demand			
6	Whi	ch of the following causes alka	linity	and hardness in natural water?	K2	CO-1	
	A	CaCO ₃	В	Ca(HCO ₃ ) ₂			
	C	MgCO ₃	D	All of these			
7	Wha	K1	CO-1				
	Α	7	В	Less than 7			
	С	Greater than 7	D	Zero			
8	Acio	K2	CO-1				

# Section A Answer all questions (75 x 1 = 75)

	Α	CuSO ₄	В	CaCO ₃		
	С	Na ₂ CO ₃	D	NH4OH		
9		Hardness of water is due to the	ne pr	resence of salts of	K1	CO-1
	Α	Potassium	В	Chlorine		
	С	Magnesium	D	Boron		
10	Selec	t the incorrect statement from th	ne fo	llowing :	K4	CO-1
	A	Water which does not form lather with soap and forms white scum is called hard water	В	Hard water contains dissolved calcium and magnesium salts in it		
	С	In hard water, cleansing quality of soap is depressed	D	Due to the presence of dissolved hardness-producing salts, the boiling point of water is depressed		
11	Selec	et the incorrect statement from th	ne fo	llowing option.	K5	CO-1
	A	Permanent hardness is due to dissolved chlorides and sulphates of calcium and magnesium	В	It can be removed by mere boiling of water		
	С	It is also known as non- alkaline hardness	D	The difference between the total hardness and the alkaline hardness gives the non-alkaline hardness		
12	Alka	line hardness is due to the preser	nce c	of bicarbonate, carbonate and	K4	CO1
	hydro	oxides of the hardness-producing	g me	tal ions		
12	A	t the incompatient statement from the	D		V5	CO1
15	Selec	The incorrect statement from th			KJ	COI
	A	better than soft water	В	water can help to produce strong teeth		
	C	Hard water coats the lead piping with a layer of insoluble calcium carbonate which prevents poisonous lead dissolving in water	D	Boiler feed water should also be hard in nature		
14	Hard of	ness of water is conventionally e	expre	essed in terms of equivalent amount	K3	CO1
	А	H ₂ CO ₃	В	MgCO ₃		
	С	CaCO ₃	D	Na ₂ CO ₃		
15	Whic	ch of the following is not a unit of	of ha	rdness?	K1	CO1
	Α	Parts per million	В	Degree centigrade		
	С	Degree clarke	D	Degree French		

16		is used for the salting out of	p.	K3	CO2	
	Α	NaOH	В	CuSO ₄		
	С	NaCl	D	BaCl ₂		
17	Whic manu	h one the following is actin facture of soap?	g a	s the perfumery agent during the	K1	CO2
	Α	Jasmine Oil	В	Castor Oil		
	С	Grease Oil	D	None		
18	Whic	h type of soap is useful for sensi	itive	skin for allergies?	K3	CO2
	Α	Toilet soap	В	Metal soap		
	С	Transparent soap	D	Detergents		
19	What	t is true about soap?			K5	CO2
	Α	Soaps are water soluble	В	Soaps are made from fats and Oils		
	С	Soaps are formed from sodium (or) potassium salts of fatty acids	D	All of these		
20	Whic	h of the following the residual p	rodı	ict in the formation of soap?	K2	CO2
	А	Glyceraldehydes	В	Glycerol		
	С	Glycerin	D	Acrylonitrile		
21	Whic	cream and shampoos?	K1	CO2		
	А	Calcium	В	Potassium		
	С	Sodium	D	Magnesium		
22	Deter	rgents are sodium salts of	••••		K2	CO2
	А	Aryl benzene sulphonic acid		Sulphonic acid		
	С	Alkyl benzene sulphonic acid	D	Glycerin Oil		
23	Whic	h one of the following is acting	as co	ommon toilet soap?	K1	CO2
	А	Potassium hydroxide		Sodium Carboxylate		
	С	Potassium Carboxylate		Glycerin		
24	Soft	soaps are the limitation of hot pr	oces	s because of their	K4	CO2
	А	High alkalinity		Low alkalinity		
	С	Low solubility in water		High solubility in water		
25	Soap	s do not act efficiently in hard w	ater	and in acidic solution.	K3	CO2
	А	True		False		
26	Soap	s are based soap	ydet	ergents	K2	CO2
	A	Water	В	Kerosene		

	C	Oil	D	Acid		
27	The s	saponification of a fat or oil isdo	ne us	singsolution forhot	K1	CO2
	А	КОН	В	NaOH		
	С	HCl	D	NaCl		
28	Selec	K4	CO2			
	Α	Hard soaps are the sodium carboxylates	В	Soft soaps are potassium carboxylates		
	С	Hard soaps are manufactured by cold process	D	Example of soft soap – shampoo and shaving cream		
29	Whic	ch of the following is a typical so	oap n	nolecule?	K1	CO2
	А	Calcium stearate	В	Potassium permanganate		
	С	Sodium bicarbonate	D	Sodium stearate		
30	The ^c	% weight of detergent in washin	g pov	wders is	K1	CO2
	A	5-10	В	50-70		
	С	15 – 30	D	30-45		
31	•••••	glass is used for making len	ises.	d	K1	CO3
	А	Silicate glass	В	Borosilicate glass		
	С	Optical glass	D	Flint glass		
32	The 1	main constituent of Borosilicate	glass	is	K2	CO3

	Α	Silica and borax	В	Alumina		
	С	Quartz	D	Sand		
33	How	К3	CO3			
	Α	Reduces porosity	В	Enhances mechanical strength		
	С	Increase softening temperature	D	Improves chemical durability		
34	Whic	ch of the following is not a proce	ess in	volved in glass production?	K2	CO3
	Α	Foaming and shaping	В	Annealing		
	С	Boiling	D	Finishing		
35	Whic	ch one is an example for amorph	ous s	solid?	K1	CO3
	Α	NaCl	В	Glass		
	С	CsCl	D	Rutile		
36	For t mate	<b>K</b> 1	CO3			
	Α	K ₂ CO ₃	В	Na ₂ CO ₃		

	C	SiO ₂	D	Al ₂ O ₃		
37	Glass	ses have good	<b>i</b>	L	K2	CO3
	Α	Tensile strength	В	Mechanical property		
	C	Compressive strength	D	All the above		
38	Hard	glasses is also called as	•••••		<b>K</b> 1	CO3
	Α	Soda lime	В	Potash lime		
	С	Lead glass	D	Crooke glass		
39	Whic	ch method of forming cannot be	used	to produce sheet glass?	K3	CO3
	Α	Floating	В	Rolling		
	С	Drawing	D	Casting		
40	Glass	ses showevidenceof fi	actu	res	K2	CO3
	Α	No	В	Brittle		
	С	Ductile	D	Oblique		
41	Glass	s is a mixture of	i	L	K2	CO3
	Α	Non metallic Silicates	В	Metallic silicates		
	С	Metallic acetates	D	Non-metallic acetates		
42	What	t changes are observed when a g	lass i	s heated?	K4	CO3
	Α	It becomes softer	В	It bursts		
	C	It solidifies	D	It disintegrates		
43	How indus	many commercial forms of glass	s are	there for various engineering and	K2	CO3
	Α	8	В	11		
	C	9	D	10		
44	What	t material is used in greenhouse?	)		K2	CO3
	A	Corrugated thermoplastic	B	Polycarbonate		

	C	GI sheet	D	Laminated tempered glass		
45	Prim	K1	CO3			
	Α	Crystal	В	Sand		
	С	Silica	D	Limestone		
46	46 Which are commonly used as liquid lubricants?					CO4
	Α	Animal Oils	В	Vegetable Oils		
	С	Mineral Oils	D	Blended Oils		
47	The t and 1	K2	CO4			

	Α	Flash point	B	Cloud point		
	С	Pour point	D	Fire point		
48	Exan	nple for water in oil emulsion (V	V/O)	is	K2	CO4
	Α	Vanishing cream	B	Butter		
	С	Paraffin oil	D	Lubricating oil		
49	An a	llotrope of carbon is	••		K1	CO4
	Α	Molybdenum sulphide	B	Emulsion		
	С	Graphite	D	Grease		
50	Lubr	icants are used to reduce	•••••	••	К3	CO4
	A	smoothness	B	friction		
	C	resistance	D	efficiency		
51	Exan	nple for oil in water emulsion (C	)/W)	is	K2	CO4
	Α	Vanishing cream	B	Castor oil		
	С	Cod liver oil	D	Butter		
52	The 1	temperature below which the liq	uid le	oses its flow nature is	K1	CO4
	Α	Cloud point	B	Viscosity index		
	С	Pour point	D	Critical point		
53	Lubr	ication is necessary to protect w	ear a	nd tear caused due to	K2	CO4
	Α	Electrostatic force	В	Gravitational force		
	C	Frictional force	D	Magnetic force		
54	Selec	ct the incorrect statement from tl	he fo	llowing option	K4	CO4
	Α	Lubricant keeps out dirt	В	Lubricant act as a seal		
	С	Lubricant transmit fluid power	D	Lubricant enhance corrosion		
55	On iı	ncreasing the lubrication, the eff	icien	cy of the machine	K2	CO4
	Α	Increases	В	Decreases		
	C	Remains same	D	Does not get affected		
56	For h	heavy cutting, the effective lubri	cants	are	K2	CO4
	А	Coconut Oil	В	Cutting Oil		
	C	Kerosene	D	Diesel		
57	Oil e	mulsions are the most effective	lubri	cants in	K1	CO4
	Α	Heavy cutting	В	Light cutting		
	C	Engines	D	Gears		
58	The	lubricant undergoes internal con	nbust	ion when exposed to	K5	CO4

	Α	High pressure	В	Low pressure		
	С	Low temperature	D	High temperature		
59	What	t is the best lubricant for tractor	rolle	r?	<b>K</b> 1	CO4
	Α	Graphite	В	Heavy Oil		
	C	Grease	D	Vegetable Oil		
60	What	t are the lubricants used for raily	vay t	racks?	K3	CO4
	Α	Graphite	В	Grease		
	С	Coconut Oil	D	Vegetable Oil		
61	To ir	nprove anti knockofengine	areadded	K2	CO5	
	Α	Tetraethyl Lead	В	n - decane		
	С	Diethyl telluride	D	n - hexane		
62	Berg	ius process is used to produce	•••••		K4	CO5
	Α	Crude oil	В	Solid coal		
	С	Synthetic petrol	D	Alcohol		
63	Whe	n leaded petrol is used as a fuel,	the 7	TEL is converted to	<b>K</b> 1	CO5
	Α	Magnesium oxide	В	Lead oxide		
	C	Lead hydroxide	D	Zinc oxide		
64	In a j ratio	petrol engine, fuel used as a mix	ofandat 1 :17	K1	CO5	
	Α	Gasoline and air	В	Heavy oil and air		
	C	Naphthalene and air	D	Benzene and air		
65	Octa	ne number is a rating of	•••••	•	K2	CO5
	Α	Petrol knocking	В	Diesel knocking		
	С	Petrol cracking	D	Diesel cracking		
66	Petro	ol containing TEL is called is	•••••	••••••	K1	CO5
	Α	Crude oil	В	Leaded petrol		
	C	Gasoline	D	Diesel		
67	Wate	er gas is a mixture of	••••		K2	CO5
	Α	$H_2O + CO_2$	В	$CO + H_2O$		
	C	$CO + H_2$	D	$CH_4 + H_2$		
68	Depo	ositsofare harmfu	l to t	he vehicleengine.	K1	CO5
	Α	MgO	В	CaO		
	C	РЬО	D	ZnO		
69	What	t does the word petrochemicals	K3	CO5		

	Α	Chemicals based on coal	В	Chemicals based on rocks		
	С	Chemicals based on atmospheric conditions	D	Chemicals based on fertility		
70	70 Which of the following raw material obtained from petroleum can be in preparation of acetic acid?					CO5
	Α	Acetone	В	Phosphoric acid		
	C	Ethylene	D	Tartaric acid		
71	Whic	ch of the following is a non-petro	oleun	n source?	<b>K</b> 1	CO5
	Α	CaC ₂	В	H ₂ S		
	C	Paraffin	D	Olefin		
72	The	main aim of cracking is to produ	ice		K2	CO5
	Α	Gasoline	В	Lube Oil		
	C	Coke	D	Salt		
73	Whic keros	ch of the following is desirable is sene?	n pet	rol (gasoline) but undesirable in	K4	CO5
	Α	Paraffins	В	Aromatics		
	C	Mercaptans	D	Napthenic acid		
74	Mole	cular weight of crude petroleum	n may	be around	K2	CO5
	Α	50	В	250		
	С	1500	D	5000		
75	Petro	bleum deposits are detected by		· · · · · · · · · · · ·	K2	CO5
	A	Oil seepage at the surface of the earth	B	Measurement of density, elasticity, magnetic and electric properties of the rock in the crust of the earth		
	C	Age and nature of rocks inside the crust of the earth	D	All the above		

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	4	4	2	3	2	-	15
II	6	3	3	2	1	-	15
III	5	7	2	1	-	-	15
IV	5	6	2	1	1	-	15
V	6	6	1	2	-	-	15
Total	26	26	10	9	4	-	75

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	4	4	2	3	2	-	15
II	6	3	3	2	1	-	15
III	5	7	2	1	-	-	15
IV	5	6	2	1	1	-	15
V	6	6	1	2	-	-	15
Total	26	26	10	9	4	-	75

# QP CODE-18U3CHN02 `VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

## (Autonomous) DEPARTMENT OF CHEMISTRY MODEL EXAMINATION

Programme(s)	Title of the Paper	Semester
B.Sc. CHEMISTRY	NMEC- MEDICINAL CHEMISTRY	IV

Time: 3 Hrs.

Max.Marks: 75

# Section A Answer all questions (75 x 1 = 10)

1	Is known as father of medicine?					CO-1
	Α	Aristotle	В	Dioscorides		
•	С	Hippocrates	D	Galen		
2	The	ayurvedic classification system	of pl	nysiological components of human	K2	CO-1
	beir	ngs,vaata,pitha kaba is also follov	ved i	n		
	Α	Naturopathy	В	Yoga		
	С	Unani	D	Siddha		
3	The	National Institute of Ayurveda N	NIA	is the apex institute for training and	K1	CO-1
	rese	arch in Ayurveda in india.where	is it	located ?		
	Α	Bangalore	В	Chennai		
	С	Jaipur	D	Kolkatta		
4	The	Unani Systems of medicine is b	ased	on the teachings of	K1	CO-1
	Α	Galileo	В	Theodotus		
	С	Hippocrates	D	Herophilo		
5	Who	is father of Pharmacognosy?		k	<b>K</b> 1	CO-1
	Α	Theophrast seydler	В	Elder		
	C	Hippocrates	D	None of these		
6	6 Where is the central research institute of unani medicine situated.					CO-1
	Α	Bangalore	B	New delhi		
	C	Kolkata	D	Hyderabed		
7	Who is the author of the book "Lectures on homeopathic philosophy.					CO-1

	A	J.K. Kent	В	Hahnemann		
	С	J.H Clarke	D	Nash		
8	In C	Great Britain homeopathy is more comm	K2	CO-1		
	A	homoeopathy	В	homeopathy		
	С	homopathy	D	similiopathy		
9	Hom	eopathy was a type of therapy develope	ed by		K1	CO-1
	Α	Samuel Hahnemann	В	Hippocrates		
	C	Galelio	D	Aristotle		
10		is the scope of <i>Pharmacognosy</i>	<u>i</u>	<u>.</u>	K2	CO-1
	A	New drug discovery	В	Cinchona		
	С	Both a and b	D	None of the above		
11	Who	is traditionally regarded as the founder	ofA	yurveda?	K1	CO-1
	A	Shri lakshmi	В	Kamadhenu		
	C	Dhanvantari	D	Airavata		
12	Aurv	veda medicine includes most of the follo	wing	g,except	K2	CO-1
	A	Herbs	В	Diet Modifications		
	C	Life style changes	D	Needles		
13	Una	ni is close to the		L	K1	CO-1
	A	Ayurveda	В	Siddha		
	С	Homeopathy	D	Allopathy		
14	Who	introduced the unani system of medicin	ne to	india?	K1	CO-1
	A	Chinese	В	Japanese		
	С	Portugues	D	Arabs		
15	Law	of similia is under the principle of		L	K1	CO-1
	Α	Homeopathy	В	Ayurveda		
	С	Siddha	D	Unani		
16	Whi	ch classification of crude drug arrange i	n alp	habetical order	K2	CO-2
	A	Taxonomical	В	Alphabetical		
	С	Biological	D	Morpological		
17	Whi	ch classification does not describe organ	nixed	and unorganized crude drugs?	K2	CO-2
	A	Morphological	В	Taxonomical		
	С	Chemical	D	Alphabetical		
18	Cinc	hona contains	K1	CO-2		

	A	Glycosides	В	Alkaloids		
	С	Both a and b	D	None of the above		
19	Which is definite in structure?				K2	CO-2
	A	Organized drug	В	Unorganized drug		
	C	Both a and b	D	None of the above		
20	Whi	ch is the main source of curde drugs?	L	L	K1	CO-2
	A	Plant	В	Animal		
	С	Mineral	D	Marine		
21	Who	is the author of material medica pura?			K1	CO-2
	A	Nash	В	Kent		
	С	Hahnemann	D	Clarke		
22	In g	lycerrhiza glabra, glabra is belongs to	D		K2	CO-2
	A	Class	В	Order		
	C	Genus	D	Species		
23	Whi	ch of the following is used to sore throa	t.		K2	CO-2
	Α	Ginger	В	Opium		
	C	Vasaka	D	Fennel		
24	Whie	ch chemical constituent contain in digita	lis.		К3	CO-2
	A	Glycoside	В	Lipids		
	С	Resins	D	Vitamins		
25	Whi	ch chemotaxonomic classification is the	relat	ion between chemistry	K3	CO-2
	A	Morphology	В	Taxonomy		
	C	Biology	D	Pharmacology		
26	In w	hich classification is easily to identify th	ne cru	ude durgs	K3	CO-2
	Α	Alphabetical	В	Taxonomical		
	C	Morphological	D	Pharmacological		
27	Drug	g is not under the class of organized drug	.i g	I	K2	CO-2
	Α	Leaves	В	Fruits		
	C	Flowers	D	Gums		
28	Drug	g is not an example of organized crude d	rug		K2	CO-2
	A	Digitalis	В	cinchona		
	C	Aloe	D	Clove	•	
29	Most of the members of solanaceae occurs from				K1	CO-2

	Α	Tropane alkaloid	В	Opium alkaloid		
	С	Morphine	D	Codaine		
30	Give	an example for alphabetical classificati	on?	Į	K1	CO-2
	Α	Acacia	В	Benzoin		
	С	Cinchona	D	All of these		
31	Wha	t plant gel is often used in lotions and su	unblo	cks?	<b>K</b> 1	CO-3
	Α	Aloe Vera	В	St.Johns Wort		
	С	Echinacea	D	Ginger		
32	Wha	t form of herbal medicine is widely prac	cticed	in India?	<b>K</b> 1	CO-3
	Α	Western	В	Greek		
	С	Chinese	D	Ayurvedic		
33	Herb	al madicine that is applied externally w	ih a v	egetable based	K2	CO-3
	fat is	called what?	-	1		
	Α	Tincture		Infusion		
	С	Poultice		An Infusion		
34	The	steeping of herbs in alcohol to extract it	s heal	ing properties	K2	CO-3
	prod	uces what?				
	Α	Tincture		Infusion		
	С	Poultice		An Infusion		
35	Whie	ch one is used to make hot infusion?			K1	CO-3
	А	Tea pot		Container		
	С	Bottles		None of the above		
36	Herb	al medicine is based on the use of what	?		K2	CO-3
	А	Plant and Plant extract		Water		
	С	Animal sacrifice		Human hair		
37	Infus	sion is otherwise known as		A	<b>K</b> 1	CO-3
	А	Liquid		Resultant liquid		
	С	Solid		Semi-solid		
38	Herb	al syrup is prepared from			K2	CO-3
	А	Honey		Salt		
	С	Benzene		None of the above		
39	Wha	t type of natural fabric is used for makin	ng sur	gical dressing?	K2	CO-3
	A	Wood cellulose		Nylon		
	С	Terylene		All of these		

40		is a thread used for stitching together muscles with the help on needles.		K1	CO-3
	Α	Surgical suture	Bandages		
	С	Dressings	None of the above		
41	Whie	ch types under muscle fibre?		K2	CO-3
	A	Slow Oxidative	Fast Oxidative		
	С	Fast glycolytic	All of the above		
42	Wha	t is the main use of surgical bandage?		K1	CO-3
	A	First aid	Operation theater		
	С	Both a and b	None of the above		
43	Lotic	on to treated as		K2	CO-3
	A	Dry skin	Moisture		
	С	Itching	All of these		
44	Herb	al oil extract from		K2	CO-3
	Α	Vegetables	Animals		
	С	Minerals	None of the above		
45	Wha	t is the most effective natural insect repe	ellent?	K1	CO-3
	Α	Ginger oil	Volatile oil		
	C	Tea oil	Eucalyptus oil		
46	Aml	a belongs to		K1	CO-4
	Α	Phyllanthaceae	Solanaceae		
	С	Euphorbiaceae	Liliaceae		
47	Aml	a oil extract from	L	K1	CO-4
	Α	Zingiber officinale	Phyllanthus emblica		
	С	Allium sativam	Hibiscus rosasinenis		
48	Aml	a contains	L	K1	CO-4
	Α	Vitamin B	Vitamin B ₁₂		
	С	Vitamin B ₆	Vitamin C		
49	Aml	a is good for		K2	CO-4
	A	Liver	Heart		
	C	Hair growth	All of the above		
50	Ging	er is commonly used as	<u> </u>	K1	CO-4
	Α	Nausea and vomiting	Diabetes and haed ache		
	C	Both a and b	A only		

51	The scientific name of Ginger is			K1	CO-4
	A	Phyllanthus emblica	Zingiber officinale		
	C	Allium sativam	Hibiscus rosasinenis		
52	Garl	ic is closely relates to	L	K1	CO-4
	A	Onion	Ginger		
	C	Tomato	Pepper		
53	Whi	ch is known as stimulant laxative?		K3	CO-4
	A	Castor oil	Ginger		
	C	Amla	Onion		
54	Whi	ch part is mainly used as medicine in o	cinchona?	К3	CO-4
	Α	Leaves	Bark		
	C	Roots	All of the above		
55	The	scientific name of neem is		K1	CO-4
	Α	Phyllanthus emblica	Azadiracta Indica		
	C	Allium sativam	Hibiscus rosasinenis		
56	Neer	n belongs		K1	CO-4
	A	Meliaceae	Solanaceae		
	C	Euphorbiaceae	Liliaceae		
57	Whi	ch of the following as natural antibioti	c?	K1	CO-4
	A	Cloves	Paracetomol		
	C	Aspirin	None of the above		
58	Euge	enol oil is extract from		K1	CO-4
	A	Castor	Neem		
	C	Cloves	Garlic		
59	Cinc	chona belongs to		K1	CO-4
•	A	Rubiaceae	Solanaceae		
	C	Euphorbiaceae	Liliaceae		
60	Azad	diracta Indica,commonly known as		K1	CO-4
	A	Neem	Amla		
	C	Tulasi	Turmeric		
61	Deli	berate adulteration is otherwise called		K1	CO-5
	A	Accidental adulteration	Intentional adulteration		
	C	Indeliberate adulteration	All of the above		
62	62 Which of the following leads to adulteration?				CO-5
----	--------------------------------------------------	------------------------------------------------	---------------------------------	----	------
	Α	High expensive	Scarcity of the drugs		
	С	Contraband drugs	All of the above		
63	The	phytochemicals defense against	L	K2	CO-5
	Α	Competitors	Pathogens		
	С	Predators	All of the above		
64	Whie	ch is the good source of phytochemicals	?	K1	CO-5
	Α	Apple	Broccoli		
	С	Carrot	All of the above		
65	Why	stability testing of herbal product is nec	vessary?	K2	CO-5
	Α	Environmental factor	Prevent microbial contamination		
	С	Size of particles	All of the above		
66	Whio meta	ch chemicals produced by plants through bolism	n primary or secondary	K1	CO-5
	Α	Phytochemicals	Electrochemical		
	С	Photochemical	None of the above		
67	InDe	eliberate adulteration is otherwise called	L	K1	CO-5
	Α	Accidental adulteration	Intentional adulteration		
	С	Deliberate adulteration	All of the above		
68	The	undissolved portion of the drug that rem	ains after extraction	K2	CO-5
	Α	Solute	Marc		
	C	Solvent	Active drug		
69	Whie	ch of the following is not the class of sec	condary metabolite ?	K1	CO-5
	Α	Amino acids	Terpenes		
	С	Alkaloids	Phenolics		
70	Whie	ch of the following sugars as metabolites	\$?	К3	CO-5
	Α	Fructose	Sucrose		
	С	Glucose	Both a and c		
71	Seco	ndary metabolites serve used against	۱۱	K1	CO-5
	A	Bacteria	Fungi		
	С	amoebae	All of he above		

72	2 Metabolic intermediates found in living systems which are essential for				CO-5
	grow	th and life is called			
	A	Saponins	Tannins		
	С	Secondary metabolite	Primary metabolite		
73	Whi	ch one is example for secondary metaboli	ites in industry?	K1	CO-5
	A	Erythromycin	Bacitracin		
	С	Both a and b	None of the above		
74	Stan	dardization of drug means		K1	CO-5
	А	Identity	Quality		
	С	Purity	All of these		
75	A lo	cal sorce of glycosides is		K1	CO-5
	A	Cyanogenum esculenta	manihot esculenta		
	С	manihot cympogon	) manihot esculentum		

## TABLE OF SPECIFICATIONS (Question wise - No. of questions)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	11	4	-	-	-	-	15
II	5	7	3	-	-	-	15
III	7	8	-	-	-	-	15
IV	12	1	2	-	-	-	15
V	10	4	1	-	-	-	15
Total	45	24	6	-	-	-	75

# TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	11	4	-	-	-	-	15
II	5	7	3	-	-	-	15
III	7	8	-	-	-	-	15
IV	12	1	2	-	-	-	15
V	10	4	1	-	-	-	15
Total	45	24	6	-	_	-	75

#### QP CODE- 18U3CHN03 ` VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES COLLEGE FOR WOMEN

#### (Autonomous) DEPARTMENT OF CHEMISTRY MODEL EXAMINATION (FEBRUARY- 2020)

Programme(s)	Title of the Paper	Semester
B.Sc. CHEMISTRY	WATER QUALITY ANALYSIS	III

Time: 3 Hrs.

Max.Marks:75

#### Section A Answer all questions (10 x 1 = 10)

1	Th	e % of earth covered by oceans is ab	out		K1	CO-1
	Α	31%	B	51		
	С	71	D	97		
2	Th	e percentage of total quantity of wate	er in	the world that is saline is about	K2	CO-1
	Α	71%	В	33%		
	С	67%	D	97%		
3	3 A rainfall with an intensity of 5 mm/h is classified as					CO-1
	Α	traces	В	moderate rain		
	С	heavy rain	D	Lightrain		
4	Which is the odd one in the following?					CO-1
	Α	Snow	В	Sleet		
	С	Rain	D	Hail		
5	Aı	plot between rainfall intensity versus	time	e is called as	K3	CO-1
	Α	hydrograph	В	mass curve		
	C	hyetograph	D	Isohyets		
6	Th	e average pan coefficient for the stan	darc	US Weather Bureau class A pan is	K2	CO-1
	Α	0.85	В	0.70		
	C	0.90	D	0.20		
7	Th	e science and practice of water flow	mea	surement is known as	<b>K</b> 1	CO-1
	Α	Hypsometry	В	Hydrometeorology		
	C	Fluvimetry	D	Hydrometry		

8	A	hydrograph is a plot of			K2	CO-1
	Α	rainfall intensity against time	В	stream discharge against time		
	~	1	n			
	C	cumulative rainfall against time	D	cumulative runom against time	17.1	<u> </u>
9	A١	unit hydrograph has			KI	CO-1
	Α	one unit of peak discharge	B	one unit of rainfall duration		
	C	one unit of direct runoff		one unit of the time base of direct runoff		
10	10 Which of the following equation is used in hydrological flood routing?				K4	CO-1
	Α	energy equation	В	continuity equation		
	С	equation of motion	D	both a and c		
11	Th	e diversion channels seen in the We	stern	Himalayas are called	K5	CO-1
	Α	Guls or Kuls	В	Khadins		
	С	Johads	D	Recharge pits		
12	Th	e major source of fresh water in Ind	ia is	L	K4	CO-1
	Α	rainfall	В	ground water		
	С	atmospheric water	D	ocean water		
13	Ro	oftop rainwater harvesting is a tech	nique	to recharge	K5	CO-1
	Α	river water		lake water		
	С	sea water		ground water		
14	Ho	w much of earth's surface is covere	d wit	h water?	K3	CO-1
	Α	One-fourth		Half		
	С	Three-fourth		Two-third		
15	Ho	w many oceans constitute	t]	he	K1	CO-1
	ina A	1		2		
	C	3				
16	W	ich is the largest ecosystem on Earl	h?		K3	CO-2
		Descent		Forest	-	
	A	Desert		Porest		
17	U 		1 .		<b>V</b> 1	
1/	W	nich of the following represents the	physi	cal characteristics of water?	KI	0-2
	A ~			BOD		
10	C	Turbidity	/=		170	00.0
18	Which of the following is measured in mg/L?					CO-2

	A	Unit weight	Coefficient of cohesion		
	С	Discharge	Turbidity		
19	Whi	ch of the following instrument is used to	measure turbidity?	K5	CO-2
	A	Olfactometer	Turbidity meter		
	С	Colorimeter	Spectrophotometer		
20	Whe	en the sewage becomes stronger, the tur	bidity of wastewater?	K2	CO-2
	A	Increases	Decreases		
	C	Becomes constant	Slightly decrease		
21	The	odor in wastewater ismeasuredby		K1	CO-2
	A	Osmoscope	Chromatography		
	С	Olfacto meter	Turbidity meter		
22		indicates the freshness ofsewage.		K2	CO-2
	A	Turbidity	Color		
	С	Temperature	COD		
23	23represents the number of dilutions required to reduceodor.				CO-2
	A	Dispersion	Threshold odor number		
	C	BOD	COD		
24	The follo	odor quality of compound is ammoni owing	acal Identify the type of compound from the	K4	CO-2
	A	Acetic acid	Benzene		
	С	Ammonia	Methane		
25	Susp	bended solids are measured by which of	the following?	K3	CO-2
	A	Turbidity rod	Gravimetric test		
	С	Chromatography	Jackson's turbidity meter		
26	Whi	ch method is used to measure the color	of water?	K2	CO-2
	A	Gravimetric analysis	Chromatography		
	C	Tintometer method	Hydrometer analysis		
27	The susp	maximum permissible limit for ended solids is	DL	K1	CO-2
	A	10 mg/l	20 mg/l		
	C	30 mg/l	40mg/l		
28	28   1 TCU (True Color Unit) is equivalentto				

	A	The color produced by 1 g of platinum cobalt		The color produced by 1 mg of platinum cobalt		
	C	The color produced by 1 mg of platinum cobalt in 1L of distilled water		The color produced by 1 mg of platinum cobalt in 1mL of distilled water		
29	Th wa	e maximum desirable limit Bureau of ter is	f Inc	lian Standards (BIS) of lead in the drinking	K1	CO-2
	Α	0.05 mg/l		0.09 mg/l		
	С	0.1 mg/l		1.0 mg/l		
30	Ze	olite softening process removes			K1	CO-2
	Α	only temporary hardness of water		only permanent hardness of water		
	C	both temporary and permanent hardness of water		the dissolved gases in permanent hard water		
31	Co	nventional tertiary treatment is			K1	CO-3
	A	chemical coagulation and flocculation		Filtration		
	С	sedimentation		none of these		
32	Th	e maximum desirable limit (BIS) of tot	tal h	ardness (as CaCo ₃ ) in drinking water is	K2	CO-3
	Α	600 ppm		300 ppm		
	С	500 ppm		1000 ppm		
33	Th	e activated sludge process is sometime	refe	erred as	K3	CO-3
	A	fluid bed biological oxidation system		turning bed biological oxidation system		
	C	fixed bed biological oxidation system		none of the above		
34	Wł	nen temporary hard water is boiled, one	e of	the substances formed is	K2	CO-3
	A	calcium bicarbonate		calcium sulfate		
	C	hydrogen chloride		carbon dioxide		
35	Th	e methods used for biological treatmen	nt are	9	K1	CO-3
	Α	lagoon		activated sludge process		
	С	oxidation ditches		all of these		+
36	Bo	th temporary and permanent hardness of	of w	ater can be removed on boiling water with	K1	CO-3
	Α	calcium hydroxide		sodium carbonate		
	C	calcium oxide		calcium carbonate		
37	Wł tre	nich of the following physical method atment of drinking water?	d is	used as germicidal in modern time for the	K2	CO-3
	Α	Chlorination		Treating with potassium permagnate		

	С	UV radiation		Treating with bleaching powder		
38	Se	condarytreatmentusesto	o cor	isumewastes.	K1	CO-3
	A	chemicals		micro-organisms		
	С	filtration		none of these		
39	Ac	id used mostly for removal of milk sto	one i	S	K3	CO-3
	A	Acid used mostly for removal of milk stone is		nitric acid		
	С	gluconic acid		tartaric acid		
40	Ac	cording to BIS the maximum permiss	ible	limit of dissolved solids in drinking water is	K2	CO-3
	А	1000 mg/l		1. 500 mg/l		
	С	2. 2000 mg/l		3. 2000 mg/l		
41	Fis	shes can store morequantity of		in theirbodies.	K2	CO-3
	A	Hg		Cl		
	С	Bi		Pd		
42	Th	eis an important requi	reme	ent of the aquaticlife.	K4	CO-3
	А	Dissolved nitrogen		Dissolved chlorine		
	С	Dissolved oxygen		Dissolved methane		
43	Wł	hich of the following is a waterborne dise	ase?		K2	CO-3
	A	Typhoid		Cholera		
	С	Diarrhoea		All of the above		
44	Th	e main sources of Arsenic in waterare		L	K2	CO-3
	A	Floods		Industrial waste		
	С	Both b and c		Fertilizers		
45	Wl	hich of the following diseases or infec	tions	is caused due to poor water hygiene?	K1	CO-3
	A	Leprosy		Trachoma		
	С	Conjunctivitis		All of the above		
46	Wl	hich of the following is mainly respon	sible	for the causes of water pollution?	K1	CO-4
	A	Afforestation		Oil refineries		
	С	Paper factories		Both b and c		
47	Ch	lorofluorocarbon are nonflammable c	hemi	cals mainly usedin	K2	CO-4
	A	Perfumes		Refrigerators		
	С	Air conditioners		All of the above		
48	Wl	hat are the health effects of excess flue	oride	in drinking water?	K2	CO-4
	A	Fluorosis		Lung disease		
		4	···· & ···· · · · · · · · · · · · · · ·	4		

	С	Toothaches		Intestinal infection		
49	Th	e optimum value in natural wateris			K1	CO-4
	Α	2-4ppm		4-7ppm		
	С	4-6ppm		2-7ppm		
50	In lin inc	most freshwater lakes, the algal phited by the availability of which of organic ions?	proc the	luctivity is following	К3	CO-4
	A	C		N		
	C	P		All of the above		~ ~ 1
51	Ni	trification is performed by a small grou	ipof		K2	CO-4
	A	Viruses		Autotrophic bacteria		
	С	Fungi		Eutrophic bacteria		
52	W	hat is the minimum percentage of solid	s in	wastewater?	K1	CO-4
	A	30 %		40 %		
	С	50 %		60 %		
53	W	hat is the percentage of settleable solid	s in	municipal wastewater?	K2	CO-4
	А	60 %		70 %		
	С	80 %		90 %		
54	W	hat is the colour of the wastewater after	r 6 ł	nours of a generation?	K4	CO-4
	А	Grey		Light brown		
	С	Dark brown		Dark grey		
55	W	hich of the following is not a volatile o	rgar	nic compound?	K2	CO-4
	A	Hydrochloric acid		Acetaldehyde		
	С	Dichloromethane		Formaldehyde		
56	W	hat is the maximum pH that the bacteri	a ca	n sustain in terms of alkalinity?	K2	CO-4
	A	7		7.5		
	С	8		8.5		
57	W	hat is the intermediate zone composed	of iı	n aerobic-anaerobic ponds?	K1	CO-4
	A	Algae		Aerobic bacteria		
	С	Organic solids		Facultative bacteria		
58	Ni	trification efficiency is significantly su	ppre	essed as the temperature is	K5	CO-4
	A	Increased		Decreased		

	C	Neutral	Maintained		
59	• • •	is a process which involves fur	ther removal of the nitrogen.	K1	CO-4
	A	Nitrification	Denitrification		
	С	c) Ammonification	Reduction		
60	In	rotating biological contractors, what perce	ent of corrugated plastic discs are submerged?	K3	CO-4
	Α	20	40		
	С	50	60		
61	5 (	days-biochemical oxygen demand (BOD ₅	) is taken at a temperature of	K2	CO-5
	Α	0°C	15°C		
	С	20°C	25°C		-
62	۸v	well oxidized sewage contains nitrogen m	ainly as	K4	CO-5
	Α	Nitrates	Nitrites		
	С	Free ammonia	None of these		
63	In	a sludge tank, the gas mainly produced, is		K1	CO-5
	Α	O ₂	N ₂		
	С	H ₂	CO ₂		
64	 wa	Disease caused by eating fish that having mercury is	found in water contaminated with industrial	K1	CO-5
	Α	Brights disease	Osteosclerosis		
	С	Hashimotos disease	Minamata disease		
65	• • •	made organisms to build their eco	system in quatic?	K2	CO-5
	Α	Force from other organisms	Increase in water level		
	С	Curiosity	Evolution		
66	Wł	hich of the following is the major source of	of fresh water which is available in India?	K1	CO-5
	A	Pond water	Ground water		-
	С	Ocean water	River water		
67	Wl the	hich is the first state in India to make root houses	of top rain water harvesting compulsory to all	K2	CO-5
	A	Kerala	Assam		
	С	Goa	Tamil Nadu		
68	Th	e type of solids which floats in sewage is	······	K1	CO-5
	Α	Total solids	Settleable solids		

69	•••	is used to find the D.O conten	t of	sewage	K3	CO-5
	Α	Kjeldahl method		Winkler method		
	С	Olfactometer		Chromatography		
70	Th	e permissible dose of chloride in dome	stic	sewage is	K1	CO-5
	Α	10ppm		250ppm		
	С	120ppm		1ppm		
71	Bio	o-chemical oxygen demand (BOD) for	the	first 20 days in generally referred to	K2	CO-5
	Α	First stage demand		Carbonaceous demand		
	С	Initial demand		All of these		
72	² The distance between the centres of the peaks of double tiscalled as?				K4	CO-5
	Α	couplingconstant		spin constant		
	С	spinspincoupling		chemicalshift		
73	$H_2$	, CH ₄ , $C_2H_6$ and $C_6H_6$ exhibit which PM	IRsp	pectra?	K2	CO-5
	Α	Singlet		Doublet		
	С	Triplet		Quintet		
74	Pe	rmanent hard water may be softened by	y pa	ssing it through	K2	CO-5
	Α	Sodium phosphate		Sodium silicate		
	С	Sodium hexametaphosphate		Sodium bicarbonate		
75	75 Which of the following physical method is used as germicidal in modern time for the treatment of drinking water?					CO-5
	A	UV radiation		Treating with bleaching powder		
	С	Treating with potassium KMnO ₄		Chlorination		

## TABLE OF SPECIFICATIONS (Question wise – No. of questions)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	4	4	2	3	2	0	15
II	6	3	3	2	1	0	15
III	5	7	2	1	0	0	15
IV	5	6	2	1	1	0	15
V	6	6	1	1	1	0	15
Total	26	26	10	9	4	0	75

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	4	4	2	3	2	0	15
II	6	3	3	2	1	0	15
III	5	7	2	1	0	0	15
IV	5	6	2	1	1	0	15
V	6	6	1	1	1	0	15
Total	26	26	10	9	4	0	75

## TABLE OF SPECIFICATIONS (Marks wise - Total marks)

HOVER EXPONENTIAL	VIVEKAN	TÜVRİL	NEINIAN HIFIED WWW.Iav.com ID 3105078467						
Programme	B.Sc	Programme Code		U	СН	Regul	ations	2	2018-2019
Department		Chemistry			Semester				4
Course Code	(	Course Name	F per	Periods r Week	Credit		Maxim	um M	Iarks
		~ ~ ~ ~	L	P	C	CA	ES	E To	otal
18U4CHC04	Gener	Core Paper –IV al Chemistry - IV	6	0	5	25	75		100
COURSE OBJECTIVES	<ol> <li>To study about</li> <li>Toacquirethek</li> <li>To understand</li> </ol>	the fundamentals and applic nowledgeaboutcarboxylicaci d the principle and significa	cations ds,itsd nce off	of nucl erivativ hermod	earchemistry. es,Aliphatican ynamics.	dAromatic	amines.	·	
POs		PROGRA	MMF	E OUTC	COME				
PO 1	Capable of dem form a part of an	onstrating comprehensive k undergraduate programme o	nowle ofstudy	dge and /.	understandin	g of one o	or more	disci	iplines that
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,								
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,								
PO 4	Capacity to extra non-familiar pro life situations.	apolate from what one has leaded blems, rather than replicate	earned curricu	and app 11um coi	bly their comp ntent knowled	etencies to ge; and ap	solve d ply ones	iffere learr	ent kinds of ning to real
PO 5	Ability to evaluarguments of oth	ate the reliability and releases; analyse and synthesis dates are specific as a second synthesis and synthesis are specific as a second synthesis and synthesis are specific as a second synthesis are specific as a sec	evance ata froi	of evi m a vari	dence;identify ety of sources	v logical f ; draw valio	laws ar d conclu	nd ho isions	oles in the setc.,
PO 6	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,								
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.								
PO 8	Ability to analysideas, evidence a	e, interpret and draw conclu and experiences from an oper	isions n-minc	from qu led and	antitative/qua reasoned pers	litative dat pective.	a; and c	ritica	llly evaluate
PO 9	Critical sensibility to lived experiences, with self awareness and reflexivity of both self and society.								
PO 10	Capability to us variety of releva	e ICT in a variety of learni nt information sources; and u	ng situ 1se app	uations, propriate	demonstrate a e software for	bility to ac analysis of	ccess, va data.	aluate	e, and use a

PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students identify the fundamentals and applications of nuclear chemistry.
CO 2	Students demonstrate the preparations and properties of mono and dicarboxylic acids.
CO 3	Students understand about the Nomenclature, preparations and properties of some aliphatic and aromatic amines.
CO 4	Students learn about the concepts and significance of various thermodynamic functions
CO 5	Students analyze about the bond energy, free energy, exothermic and endothermic reactions.
Pre-requisites	

Knowledge Levels											
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing											
CO / PO / KL Mapping											
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
COs	KLs	POs	KLs								
CO 1	4	PO 1	2								
		PO 2	1								
CO 2	6										
		PO 3	5								
CO 3	2	PO 4	5								
		PO 5	4								
CO 4	1	PO 6	6								
		PO 7	2								
CO 5	4										
		PO 8	4								
PSOs	KLs	PO 9	1								
		PO 10	3								
PSO 1	3										
		PO 11	3								
	4	PO 12	2								
PSO 2		PO 13	1								
	1	PO 14	6								
F3O 3		PO 15	3								

CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
66	PROGRAMME OUTCOME (POs)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1
CO3	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO4	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

<b>CO / PSO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)											
60		Programme Specific Outcome (POs)									
COs	CO1	CO2	CO3	CO4	CO5						
PSO1	2	1	2	1	2						
PSO2	3	1	1	1	3						
PSO3	1	1	2	3	1						

Course Assessment Methods						
Direct						
1. Continuous Assessment Test I, II & Model						
2. Assignment						
3. End SemesterExaminations						
Indirect						

1.	Course	End	Delivery

Content of the Syllabus											
	Nuclear Chemistry	Periods	12								
Unit - I	Constitution of the nuclei - stable and unstable nuclei and their relationship to (n/p) ratio. Nuclear forces - Natural radioactivity - modes of decay - Radioactive decay series - Nuttal rule and average life - Radioactive equilibrium - Mass defect and binding energy - Numerical problems - Artificial transmutation and artificial radioactivity. Nuclear fission - atom Bomb and nuclear reactors - Nuclear fusion - fusion reaction in the sun, Hydrogen bomb. Application of radioactive isotopes - C14 dating, rock dating - Isotopesas tracers - Medicinal Applications.										
	Carboxylic acids and derivatives	Periods	12								

Unit - II	General preparation and reactions of Monocarboxylic acids - Preparation, properties and uses of Dicarboxylic acids: Succinic, Maleic and Fumaric acid. Hydroxy acids: Lactic acid, Malic acid, Tartaric and Citric acid. Aromatic dicarboxylic acid: Phthalic acid.Acid derivatives: preparations of Acid chlorides, Anhydrides, Esters and amides. Reactions involving acid derivatives - Hofmann, Curtius, Lossen and Schmidtrearrangements.							
	Organic Nitrogen Compounds	Periods	12					
Unit - III	Aliphatic Amines: Nomenclature - Separation of amines by Hinsberg's and Hoffmann methods - General methods of preparation and properties of primary amines. Distinction between 10, 20 and 30 amines . Aromatic Amines: Basicity of Aromatic amines - Derivatives of aniline - Acetanilide -preparation and properties. Diazonium compounds - Diazotization mechanism, preparation and properties of diazoaceticester.							
	Thermodynamics - II	Periods	12					
Unit - IV	Limitations of first law - Need for second law - Spontaneous process - cyclic process - Carnot cycle - efficiency - Carnot theorem - thermodynamic scale of temperature. Concept of Entropy - Units ofEntropy - entropy a state function - entropy change in isothermal expansion of an ideal gas - Calculation of entropy changes of an ideal gas with changes in P, V & T. Entropy of mixture of ideal gases - physical significance of entropy. Work & free energy functions - partial molar free energy - Gibbs Duhemequation - Gibbs-Helmholtz equation - Clapeyron - Clausius equation. Third law ofthermodynamics							
	Thermochemistry	Periods	12					
Unit - V	Introduction - Enthalpy change in a chemical reaction - Exothermic and endothermic reactions - Relation between heats of reaction at constant volume and pressure - Standard Enthalpy - Determination of enthalpies - Kirchoffs equation - Hess's Law and its applications - measurement of enthalpy – Bond energy and its applications - Nernst Heat theorem -Flame temperature and Explosiontemperature.							
	Total Periods		60					

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry (33rd edition), Vishal publishing co., (2017).
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry, (47th edition) Vishal publishing co., (2017).
3	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (22nd edition), New Delhi,S. Chand & Co., (2016).
References	
1	Morrison R.T. and Boyd R.N., Organic Chemistry (6th edition), New York, Allyn & Bacon Ltd., (1992).

2	Madan.R.D., Inorganic Chemistry (3rd edition), New Delhi, S. Chand and Co., (2012).
3	Mukherji.S.M, Singh.S.P, Kapoor.R.P, Organic Chemistry volume – I (4th edition) New Age International (p) limited (1998).
<b>E-References</b>	
1	http://www.ltcconline.net/stevenson/2008CHM101Fall/CHM101Lecture Notes20081201a. htm
2	https://www.askiitians.com/iit-jee-amines-and-nitrogen-containing-compounds/amines-and-its-preparation-methods/
3	nptel.ac.in/courses/101104063/25

Signature of BOS Chairman

HUMAL MET	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								VRheinland b 3100/2008
Programme	B.Sc	Programme Code		U	СН	Regul	ations		2018-2019
Department		Chemistry			Semester				4
Course Code	C	Course Name	l pe	Periods r Week	Credit		Maxim	um 1	Marks
			L	Р	С	CA	ES	Ε	Total
18U4CHA02		Allied Chemistry – II (Botany/Zoology)	5	0	5	25	75		100
COURSE OBJECTIVES	To compile stud research laborate various kinds of	ents with various chromato ories.To educate about the drugs and its uses.	ograph chem	y techn iistry o	iques and its a f bio-organic	application and bio-in	s towar organic	ds i coi	ndustries and mpounds and
POs		PROGRA	MME	OUTC	OME				
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme ofstudy.								
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,								
PO 3	Capability to ap claims, beliefs or	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,							
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.								
PO 5	Ability to evaluarguments of oth	ate the reliability and rel ers; analyse and synthesis d	evance ata fro	e of ev mavar	idence;identify iety of sources	/ logical f ; draw vali	laws ar d conclu	nd l isioi	noles in the nsetc.,
PO 6	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,								
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.								
PO 8	Ability to analys ideas, evidence a	e, interpret and draw conclu nd experiences from an ope	isions n-min	from qu ded and	antitative/qual reasoned pers	itative data pective.	i; and cr	ritica	ally evaluate
PO 9	Critical sensibili	ty to lived experiences, with	self a	warenes	s and reflexivi	ty of both :	self and	soci	iety.
PO 10	Capability to use variety of relevan	e ICT in a variety of learni nt information sources; and	ng siti use ap	iations, propriat	demonstrate al e software for	oility to acc analysis of	cess, va data.	luat	e, and use a

PO 11	Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.
PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students predict the concept of various chromatographic techniques.
CO 2	Students identify the details of bio organic compounds and bio inorganic compounds.
CO 3	Students utilize knowledge of antipyretics, analgesic, antiseptics, disinfectants and anesthetics
CO 4	Students analyze the structure of different haem proteins.
CO 5	Students evaluate the different pharmaceutically important compounds and their uses in real life.
Pre-requisites	

Knowledge Levels								
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing								
	CO / PO /	KL Mapping						
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	KLs	POs	KLs					
CO 1	4	PO 1	2					
		PO 2	1					
CO 2	2		_					
		PO 3	5					
CO 3	3	PO 4	5					
		PO 5	4					
CO 4	4	PO 6	6					
		PO 7	2					
CO 5	5							
		PO 8	4					
PSOs	KLs	PO 9	1					
		PO 10	3					
PSO 1	3							
		PO 11	3					
		PO 12	2					
PSO 2	4	DO 12						
		PO 13	1					
PSO 3	1	PO 14	6					
150 5	1	PO 15	3					

CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
60					PRO	GRAN	IME C	OUTCO	)ME (l	POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

CO / PSO Mapping								
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
CO.		Program	mme Specific Outcom	e (POs)				
COs	CO1	CO2	CO3	CO4	CO5			
PSO1	2	2	3	2	1			
PSO2	3	1	2	3	2			
PSO3	1	2	1	1	1			

Course Assessment Methods				
Direct				
1. Continuous Assessment Test I, II & Model				
2. Assignment				
3. End SemesterExaminations				
Indirect				

1. Course End Delivery

Content of the Syllabus								
	Chromatography	Periods	12					
Unit - I	Chromatography -definition-types- column, paper, thin layer -method of separation application- Difference between paper chromatography and thin layer chromatography. High pressure liquid chromatography- HPLC-principle-experimental techniques - instrumentation and advantages.							
	Amino acids and Carbohydrates	Periods	12					
Unit - II	Aminoacids- Preparation- Gabriel method, Strecker synthesis- Isoelect Polypeptide- Proteins- Classification- primary structure and its func Classification, Preparation and Reactions of glucose and fructose- Inter co and vice versa- sucrose and starch	ric point, Reaction tions. Carbohydra conversion of gluco	ons of glycine. ates-definition, ose to fructose					
	Bio-inorganic Chemistry	Periods	12					

Unit - III	Structure of chlorophyll, phorphyrin unit and photosynthesis. Nitrogen fixation, carbon cycle. structure of haem proteins: haemoglobin, myoglobin. Oxygen transport and respiration. Metallo enzymes, vitamins containing metals.						
	Pharmaceutical Chemistry-II	Periods	12				
Unit - IV	Structure and mode of action: Analgesics and Antipyretics-salicylic acid derivatives-aspirin, p-aminophenol derivatives- para acetamol and ibuprofen. Antiseptic and disinfectants-definition and distinction, crystal violet, acridine. Anaesthetics-definition, classification- local and general, preparation, properties and uses of cocaine and benzococaine.						
	Organic Analysis	Periods	12				
Unit - V	Qualitative analysis of organic substances: test for saturation and unsaturation; aliphatic & aromatic; acidic and basic nature of organic compound; elements test for N, S and halogens: functional groups like acid, phenol, aldehyde, ketone, carbohydrate, amine, ester, amide and diamide.						
	Total Periods		60				

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry,50th edition, New Delhi, S. Chand & Co., (2011). R., Sharma L.R., Kalia K.K., Principles of
2	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry 23rdedition. New Delhi, S. Chand & Co., 2004. Applied Chemistry, New Delhi, S. Chand & Co., 2008.
3	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, 1995.
4	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, 22nd edition, New Delhi, S. Chand & Co., 2016.
5	Pandey.O.P, Bajpai.D.N., Giri.S., Practical Chemistry, New Delhi, S.Chand & Co, 2012.
References	
1	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, New Delhi, S. Chand & Co., 2008.
2	Sharma.B.K., Industrial chemistry including chemical engineering -16th- Meerut, Krishnaprakasam media. 2011.
<b>E-References</b>	
1	https://www.khanacademy.org/test-prep/mcat/chemical-processes/separations- purifications/a/principles-of-chromatography
2	https://en.wikipedia.org/wiki/Carbohydrate.
3	https://chem.libretexts.org/

	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	B.Sc	Programme Code	UCH Regulations				ations	2018-2019	
Department		Chemistry			Semester			4	
Course Code	Course Name			Periods Credit per Week		Maxim		um Marks	
			Ĺ	P	C 5	CA 25	ESI 75	E Total	
18U4CHA04	Allie To gain knowled	ed Chemistry – II (Physics)	5 ounda	ond not	) ural products s	25 uch as ami	/5	100	
OBJECTIVES	carbohydrates.A	cquire the knowledge about r	nedic	inal drug	gs and dyes	such as ann	ino acius	and	
POs		PROGRAM	IME	OUTCO	OME				
PO 1	Capable of dem form a part of an	onstrating comprehensive kind undergraduate programme of the second seco	nowle ofstud	edge and y.	l understandin	g of one o	or more	disciplines that	
PO 2	Ability to expre appropriate med	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,							
PO 3	Capability to ap claims, beliefs o	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,							
PO 4	Capacity to extr non-familiar pro- life situations.	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.							
PO 5	Ability to evaluarguments of oth	uate the reliability and releases; analyse and synthesis da	evance ita fro	e of evi mavari	dence;identify ety of sources	v logical f ; draw valie	laws and d conclus	d holes in the sionsetc.,	
PO 6	A sense of inquand articulating; etc.,	iry and capability for asking Ability to recognise cause-a	g rele nd-ef	vant/app fect rela	propriate quest tionships, defi	tions, prob	lematisin 1s, formu	ig, synthesizing late hypotheses	
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.								
PO 8	Ability to analysideas, evidence a	se, interpret and draw conclus and experiences from an oper	sions 1-min	from qu ded and	antitative/qual reasoned pers	itative data pective.	a; and cri	tically evaluate	
PO 9	Critical sensibili	ty to lived experiences, with	self a	warenes	s and reflexivi	ty of both s	self and s	society.	
PO 10	Capability to us variety of releva	e ICT in a variety of learning nt information sources; and u	ng sit 1se ap	uations, propriat	demonstrate a e software for	bility to ac analysis of	ccess, va data.	luate, and use a	
PO 11	Ability to work through to comp	independently, identify appr letion.	opria	te resou	rces required f	for a projec	ct, and n	anage a project	

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students will learn the basic concepts of coordination compounds and its applications.
CO 2	Students will know about the aminoacids, proteins and carbohydrates.
CO 3	Students will gain knowledge regarding electrode potential and batteries.
CO 4	Students will enhance their knowledge towards pharamaceutical and industrial chemistry.
CO 5	Students will dyes and its importance.
Pre-requisites	

	Knowled	ge Levels						
1.Rememb	ering, 2.Understanding, 3.App	lying, 4.Analyzing, 5.Evaluatin	ıg, 6.Synthesizing					
	CO / PO / H	<b>KL Mapping</b>						
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	KLs	POs	KLs					
CO 1	2	PO 1	2					
		PO 2	1					
CO 2	2							
		PO 3	5					
CO 3	3	PO 4	5					
		PO 5	4					
CO 4	4	PO 6	6					
		PO 7	2					
CO 5	4		4					
		PO 8	4					
PSOs	KLs	PO 9	1					
	2	PO 10	3					
PSO 1	3	PO 11	2					
		PO 12	3					
	1	PO 12	Ζ					
PSO 2	4	PO 13	1					
	1	PO 14	6					
PSO 3	-	PO 15	3					
	CO/PO	Mapping						
(3/2	/1 indicates the strength of corre	elation, 3-strong, 2-medium, 1-we	eak)					
	č	5.						

COs		PROGRAMME OUTCOME (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

<b>CO / PSO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
Programme Specific Outcome (POs)									
COs	CO1	CO2	CO3	CO4	CO5				
PSO1	2	2	3	2	2				
PSO2	1	1	2	3	3				
PSO3	2	2	1	1	1				

Course Assessment Methods				
Direct				
1. Continuous Assessment Test I, II & Model				
2. Assignment				
3. End Semester Examinations				
Indirect				
1. Course End Delivery				

Content of the Syllabus									
	Coordination compounds	Periods	12						
Unit - I	Addition compounds-double salts and complexes. Complexes Mononuclear complexes only) General aspects-central metal atom,Ligand-types of ligands.Coordination number and oxidation state of central metal atom-Nomenclature-Theories of Complexes- Werners theory,Sidgwick theory,EAN rule,VBT-its applications to $[Cu(NH_3)_4]^{2+}$ , $[Ni(CO)_4]$ , $[Co(NH_3)_6]^{3+}$ and $[CoCl_6]^{3-}$ Chelation-Meaning examples – EDTA applications.								
	Amino acids and Carbohydrates	Periods	12						
Unit - II	Aminoacids - Preparation - Gabriel method, Strecker synthesis-Isoelectric point,Reactions of glycine.Polypeptide-Proteins - Classification-primary structure and its functions.Carbohydrates - definition,Classification,Preparationand Reactions of glucose and fructose-Inter conversion of glucose to fructose and vice versa-sucrose and starch								
	Electrochemistry-II	Periods	12						

Unit - III	Cells-Galvanic cell with examples.Electrode potential-single electrode potential- Standard electrode potential-Nernt equation-derivation-electrochemical series and its applications- EMF-Applications of EMF measurements:Determination of pH by using hydrogen electrode- Reference electrodes:hydrogen electrode and calomel electrode-Reversible and irreversible cell-Batteries-definitio - lead acidbattery							
	Pharmaceutical Chemistry-IIPeriods12							
Unit - IV	Structure and mode of action: Analgesics and Antipyretics-salicy aminophenol derivatives- paracetamol and ibuprofen. Antiseptic a distinction, crystal violet, acridine. Anaesthetics - definition, c preparation, properties and uses of cocaine and benzo cocaine	lic acid derivat and disinfectants lassification-local	ives-aspirin, p- -definition and and general,					
	Applied Chemistry-II	Periods	12					
Unit - V	Dyes-definition-requisites of a true dye, classification of dyes - bas application, colours and chemical constitution-Witts theory, Baye interactions, hydrogen bonds, vander-waals interaction, covalent bond principle only. Basic operations in dyeing process-preparation of fiber a andfinishing	sed on structure er theory. Dyein s with examples, and dye bath, app	and mode of ng forces-ionic cross dyeing - lications of dye					
	Total Periods		30					

Text Books	
1	Puri B.R., Sharma L.R., Kalia K.K., Principles of Inorganic Chemistry 33rd edition, Vishal publishing co., 2017.
2	Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, (19th edition), New Delhi, S. Chand & Co., (2010).
3	Puri B.R., Sharma L.R., Pathania M.S., Principles of Physical Chemistry (23rdedition). New Delhi, S. Chand &Co., (2004).
References	
1	Jayashree Ghosh .S, Fundamental concepts of Applied Chemistry, New Delhi, S. Chand & Co., (2008).
2	Sharma.B.K., Industrial chemistry including chemical engineering (16th) Meerut, Krishnaprakasammedia. (2011).
E-References	
1	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/carbhyd.htm
2	http://dyes-pigments.standardcon.com/what-is-dye.html

HIGHLE RECEIPTION	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.									ISO 9001-2008 UVRheintand CERTIFIED Www.lav.com ID 1105078407
Programme	B.Sc	Programme Code	UCH Regulations				ations		2018-2019	
Department		Chemistry				Semester				4
Course Code	Course Name			Period er Wee	s k	Credit		Maxim	um	Marks
			L 2		P 0	C	CA 25	ES	SE	Total
18U4CHAP01 COURSE	All To understand th	ied Chemistry Practicals	Jalvei		U nal	J ble the studen	2J ts to have h	13 ands-0	n tr	aining on
OBJECTIVES	qualitative analy	sis of organic	larysis	. 100	na	ble the studen		iands-0	ii u	
POs		PROGRAM	<b>IME</b>	OUTO	<b>CO</b>	ME				
PO 1	Capable of dem form a part of an	onstrating comprehensive k undergraduate programme o	nowle ofstud	dge a y.	nd	understandin	g of one o	or more	dis	sciplines that
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,									
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,									
PO 4	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.									
PO 5	Ability to evaluarguments of oth	ate the reliability and releases; analyse and synthesis dates are specific as a second synthesis and synthesis are specific as a second synthesynt	evanco ata fro	e of e mava	evio arie	dence;identify ety of sources;	logical f draw valie	laws and conclu	nd usio	holes in the onsetc.,
PO 6	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,									
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.									
PO 8	Ability to analysideas, evidence a	e, interpret and draw conclu and experiences from an ope	sions n-min	from o ded an	jua d 1	ntitative/qual easoned persp	itative data pective.	; and c	ritic	cally evaluate
PO 9	Critical sensibili	ty to lived experiences, with	self a	waren	ess	and reflexivi	ty of both s	self and	SOC	ciety.
PO 10	Capability to us variety of releva	e ICT in a variety of learning nt information sources; and the sources is a source of the sources is a source of the source of t	ng siti use ap	uation: propri	s,d ate	emonstrate ab software for a	ility to acc analysis of	cess, va data.	lua	te, and use a
PO 11	Ability to work through to comp	independently, identify appr letion.	opriat	e reso	urc	ces required for	or a projec	t, and n	nan	age a project

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students will learn how to conduct a volumetric estimation process precisely
CO 2	Students will understand reactions taking place during the experiment.
CO 3	Students will plan, conduct, review and report the experiment
CO 4	The students will learn the nature, significance, and influence of errors and how they may best be avoided
	or minimized during quantitative examination of a chemical compound. Students will gain knowledge about
	analysis of organic compounds.
CO 5	Students will evaluate the reactivity of various functional groups.
Pre-requisites	

	Knowle	dge Levels	
1.Rememb	ering, 2.Understanding, 3.Ap	plying, 4.Analyzing, 5.Evaluatin	ıg, 6.Synthesizing
	<b>CO / PO /</b>	KL Mapping	
(3/2	/1 indicates the strength of corr	elation, 3-strong, 2-medium, 1-wa	eak)
COs	KLs	POs	KLs
CO 1	2	PO 1	2
		PO 2	1
CO 2	2		
		PO 3	5
CO 3	5	PO 4	5
203		PO 5	4
CO 4	2	PO 6	6
		PO 7	2
CO 5	5		
		PO 8	4
PSOs	KLs	PO 9	1
		PO 10	3
PSO 1	3		
1501		PO 11	3
		PO 12	2
PSO 2	4		
		PO 13	1
PSO 3	1	PO 14	6
1505		PO 15	3

.

<b>CO / PO Mapping</b> (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
COs							PR OU	OGRA ГСОМ	MME E (PO:	s)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO4	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO5	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1

	CO / PSO Mapping						
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
		Program	nme Specific Outcom	e ( <b>POs</b> )			
COs	C01	CO2	CO3	CO4	CO5		
PSO1	2	2	1	2	1		
PSO2	1	1	2	1	2		
PSO3	2	2	1	2	1		

Course Assessment Methods
Direct
1. Continuous Assessment Test I, II & Model
2. Assignment
3. End SemesterExaminations
Indirect
1. Course End Delivery

	Content of the Syllabus		
	Volumetric Estimations-Acidimetry	Periods	9
Unit - I	1. Estimation of sodium hydroxide-standard sodiumcarbonate	I	I
	2. Estimation of Oxalic acid -standard-oxalicacid.		
	3. Estimation of Hydrochloric acid - standard oxalicacid		
Unit - II	Permanganometry	Periods	9
	1.Estimation of oxalic acid-std-Mohrs salt or ferrous sulphate.		
	2.Estimation of sodium nitrite-standard oxalic acid.		
	3.Estimation of ferrous ion.		
	Qualitative Organic Analysis	Periods	9
Unit - III	Systematic analysis of organic compounds:Characterization of Organ groups and confirmation by preparation of derivative.Functional group Ketones, carboxylic acids.	ic compounds by os that may be st	their functional udied:Aldehydes,

	Qualitative Organic Analysis	Periods	9				
Unit - IV	<b>Unit - IV</b> Systematic analysis of organic compounds:Characterization of Organic compounds by their furgroups and confirmation by preparation of derivative.Functional groups that may be studied: primary amines, phenol,amide, diamide.						
	Qualitative Organic Analysis	Periods	9				
Unit - V	Systematic analysis of organic compounds:Characterization of Organ groups and confirmation by preparation of derivative.Functional gro compounds and monosaccharides.	ic compounds by oups that may b	their functional e studied: Nitro				
	Total Periods		45				

Text Books	
1	1. V. Venkateswaran, R. Veeraswamy and A.R.Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S. Chand & Co, (1995).
References	
1	.Pandey O. P, Bajpai D. N., Giri S., Practical Chemistry, New Delhi, S.Chand & Co, (2012).
<b>E-References</b>	
1	1. http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html
2	2. http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1
3	3. http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1

Signature of BOS Chairman

POLY ENDOLUTION	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							
Programme	B.Sc	Programme Code		U	СН	Regul	ations	2018-2019
Department		Chemistry			Semester			4
Course Code	C	Course Name	] pe	Periods er Week	Credit		Maxim	um Marks
			L	<u> </u>	C	CA	ES	E Total
18U4CHN04	FO 1. To provide on	OD AND NUTRITION	2	NILNIL	2	25	15	100
COURSE OBJECTIVES	<ol> <li>To protect the</li> <li>To increase kr</li> </ol>	human beings from infection nowledge on food and nutritic	ns and	l deficier curity cor	ncy disorders. Incepts at the na	ational and	sub-nat	tional levels.
POs		PROGE	RAMI	ME OUT	ГСОМЕ			
PO 1	Capable of dem form a part of an	onstrating comprehensive k undergraduate programme o	nowle ofstud	edge and y.	understandin	g of one o	or more	disciplines that
PO 2	Ability to express thoughts and ideas effectively in writingand orally; Communicate with others using appropriate media; confidently share ones views and express herself/himself etc.,							
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications etc.,							
PO 4	Capacity to extra non-familiar pro life situations.	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply ones learning to real life situations.						
PO 5	Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesis data from a variety of sources; draw valid conclusionsetc.,							
PO 6	A sense of inqu and articulating; etc.,	A sense of inquiry and capability for asking relevant/appropriate questions, problematising, synthesizing and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses etc.,						
PO 7	Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team.							
PO 8	Ability to analys ideas, evidence a	e, interpret and draw conclu and experiences from an oper	sions n-min	from qua ded and	antitative/qual reasoned persj	itative data pective.	; and cr	itically evaluate
PO 9	Critical sensibili	ty to lived experiences, with	self a	wareness	s and reflexivi	ty of both s	self and	society.
PO 10	Capability to use variety of relevan	e ICT in a variety of learnin nt information sources; and u	ng siti 1se ap	uations,d propriate	emonstrate at e software for	oility to acc analysis of	cess, val data.	luate, and use a
PO 11	Ability to work through to comp	Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.						

PO 12	Possess knowledge of the values and beliefs of multiple cultures and a global perspective etc.,
PO 13	Ability to embrace moral/ethical values in conducting ones life, formulate a Position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work etc.,
PO 14	Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating etc.,
PO 15	Ability to acquire knowledge and skills, including learning how to learn, that are necessary for participating in learning activities throughout life, through self-paced etc.,

COs	COURSE OUTCOME
CO 1	Students will gain knowledge in describing general nutritional components emphasizing regulation of
	dietary carbohydrates, fat, and protein metabolism and their impact on nutritional status and health.
CO 2	Students will evaluate others aspects of food quality.
CO 3	Students can impact of food preservation, processing, packaging and distribution on food quality.
CO 4	Students produce a variety of food products applying principles of food handling and preparation
CO 5	Students can give an overview of the main classes of compounds influencing color and flavor of food and
	have knowledge on important sources of vitamins and minerals in food
Pre-requisites	

	Knowle	dge Levels	
1.Remember	ering, 2.Understanding, 3.Ap	plying, 4.Analyzing, 5.Evaluatin	g, 6.Synthesizing
	CO / PO /	KL Mapping	
(3/2	/1 indicates the strength of corr	relation, 3-strong, 2-medium, 1-we	eak)
COs	KLs	POs	KLs
CO 1	4	PO 1	2
		PO 2	1
CO 2	2		
		PO 3	5
CO 3	6	PO 4	5
		PO 5	4
CO 4	5	PO 6	6
		PO 7	2
CO 5	4		
		PO 8	4
PSOs	KLs	PO 9	1
		PO 10	3
PSO 1	3		
1201		PO 11	3
		PO 12	2
PSO 2	4		
		PO 13	1
PSO 3	1	PO 14	6
1505		PO 15	3

CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
GO						PRO	GRAM	ME O	UTCO	ME (PO	)s)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	3	2	1	1	1	1	1	1	2	2	2	3	2	1	2
CO3	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
		Program	nme Specific Outcom	e (POs)						
COs	CO1	CO2	CO3	CO4	CO5					
PSO1	2	2	1	1	2					
PSO2	3	1	1	2	3					
PSO3	1	2	1	1	1					

Course Assessment Methods					
Direct					
1. Continuous Assessment Test I, II & Model					
2. Assignment					
3. End SemesterExaminations					
Indirect					
1. Course End Delivery					

	Content of the Syllabus						
Theth T	Food Sources	Periods	6				
Unit - I	Introduction-types-sources-nutrients of foods: carbohydrate, protein, fats,	oils - functions of	f food.				
Unit - II	Food Poisoning and Adulteration	Periods	6				
	Food poisoning: Sources, causes and remedy- Food adulteration: Types, common adulteration in food.						
	Food Preservation and Processing	Periods	6				
Unit - III	Importance of food preservation - principles of food preservation -Food spoilage, causes of food spoilage - types of Food spoilage - preservation and processing by heating: sterilisation, pasterusation.						
Unit - IV	Vitamins	Periods	6				
	Definition-types-functions, Sources, deficiency diseases of A, C, K, E and	d B1,B12,B6.					
Un:t V	Minerals	Periods	6				
Unit - V	Mineral elements in food - source and daily requirements of ca, Na, K, M	g, Fe and P.					
	Total Periods		30				

Text Books							
1	Sumati R.Mudambi, M.V.Rajagopal, Fundamentals of Foods and nutrition, Fourth edition 2003, New						
	Age International Publishers, New Delhi .						
2	. M.Swaminathan, Handbook of Food and Nutrition, The Bangaloreprintingand publishingCo.,Ltd,						
	Bangalore.						
References							
1	N.Shaguntala Manay, M.shadaksharaswamy, Foods Facts and Principles, secondedition, NewAge						
	International Publishers, New Delhi .						
2	B.Srilakshmi, Food Science, Secondedition, New Age International Publishers, New Delhi.						
3	Dr.Kusum Gupta, Dr.L.C.Gupta, Abhishek Gupta, Food and Nutrition, Fourthedition, JaypeeBrothers						
	medical publishers, New Delhi.						
<b>E-References</b>							
1	https://Foodandnutrition.net						
2	https://www.edx.org						

Signature of BOS Chairman

### QP CODE- 18U4CHC04

## VIVEKANANDHA COLLEGE OF ARTS & SCIENCES FOR WOMEN (AUTONOMOUS)

## DEPARTMENT OF CHEMISTRY B.Sc. DEGREE EXAMINATION IV-SEMESTER MODEL QUESTION- GENERAL CHEMISTRY – IV

# Time: 3 Hrs.

#### Max.Marks: 75

		Answei	r all questions $(20 \times 1 = 20)$		
1	Radi	oactivity was discovered by		<b>K</b> 1	CO-1
•	Α	J.J. Thomson	Madame Curie		
•	C	Henry Becquerel	Rutherford		
2	Out	of the following the one which has	no charge	K1	CO-1
	A	gamma rays	beta rays		
	C	alpha rays	cathode rays		
3	Hydi	rogen bomb is based on the phenor	menon of	K1	CO-1
	A	nuclear explosion	chemical reaction		
	C	nuclear fusion	nuclear fission		
4	4 When a radioactive nucleus emits an alpha particle, the mass number of the atom				CO-1
	A	remains same and its atomic number decreases	decreases and its atomic number increases		
	C	decreases and its atomic number decreases	increases and its atomic number decreases		
5	The	one which does not undergo cyclis	ation is	K2	CO-2
3	Α	lactic acid	maleic acid		
	C	succinic acid	phthalic acid		
6	Acet	yl chloride cannot be obtained by t	treating acetic acid with	K2	CO-2
	Α	PCl ₅	SOCl ₂		
	C	CHCl ₃	PCl ₃		
7	Lact	ic acid on oxidation with alk. Kmn	O ₄ gives	К3	CO-2
	Α	tartaric acid	pyruvic acid		
	C	cinnamic acid	propionic acid		

#### Section A Answer all questions (20 x 1 = 20)

8	Tarta	aric acid is a		K2	CO-2
	A	monohydroxybutanedioic acid	dihydroxybutanedioic acid		
	С	monohydroxypropanedioic acid	dihydroxyproapanedioic acid		
9	Whic	ch pairing of general formula and co	ompound class is incorrect?	K2	CO-3
	A	R ₃ C-NH ₂ & tertiary amine	RCONH ₂ & amide		
	C	RNH ₂ & primary amine	(RCO) ₂ NH & imide		
10	Carb	ylamine reaction is possible for		K2	CO-3
	A	1 [°] amine	2 [°] amine		
	C	3 [°] amine	None		
11	Which among the following is a primary amine?		K2	CO-3	
	A	N-methylaniline	Aniline		
	C	N,N-dimethylaniline	None		
12	The	basicity order of amines		K4	CO-3
	A	R ₃ N>R ₂ NH>RNH ₂ >ArNH ₂	R2NH>R3N>RNH2>ArNH2		
	C	R ₀ N>RNH ₂ >R ₂ NH>ArNH ₂	RNH ₂ >R ₂ NH>R ₃ N>ArNH ₂		
13	The	efficiency of the Carnot cycle is the	function of	<b>K</b> 1	CO-4
	A	temperatures (T1, T2) between which the Carnot cycle operates	net work done (W _{net} )		
	C	heat supplied (Q1) and heat rejected (Q2)	all the above		
14	Entro	opy is a measure of		<b>K</b> 1	CO-4
	A	orderliness	disorderliness		
	C	both a & b	None		
15	Wha	t happens to entropy when ice melts	into water?	K2	CO-4
	A	it increases	it becomes zero		
	C	it remains unchanged	it decreases		
16	Accord for a	ording to third law of thermodynami perfectly crystalline solid is zero at	cs, which of the following quantity absolute zero	K2	CO-4
	A	entropy	free energy		
	C	internal energy	Enthalpy		
17	In ex	othermic reaction,		K2	CO-5
	Α	$\Delta E$ is zero	$\Delta H$ is negative		
	C	$\Delta S$ is zero	ΔG is zero		

18	18 Variation of heat of reaction with temperature is known as				CO-5
	A	Van't Hoff isotherm	Van't Hoff isochore		
	C	Kirchhoff's equation	None		
19	9 Evaporation of water				CO-5
	A	exothermic change			
	C	does not involve any heat change	Unpredictable		
20	The	relationship between enthalpy chang	e and internal energy change	K3	CO-5
	A	$\Delta H = \Delta E + P \Delta V$	$\Delta H = \Delta E - P \Delta V$		
	C	$\Delta H=-(\Delta E+P\Delta V)$	$\Delta H=P\Delta V-\Delta E$		
		Sectio	n B		
	•••	Answer All question	5 = 25		
21	A	Derive the relation between mass of	lefect and binding energy.	K4	CO-1
		(	OR		
	В	Explain any five applications of ra	K3	CO-1	
22	Α	How do you differentiate maleic an	K2	CO-2	
	В	Explain the mechanism of Schmid	K4	CO-2	
23	A	Write any three differences betwee	$n 1^0, 2^0 \& 3^0$ amines.	K1	CO-3
			OR		
	В	Explain the mechanism of diazotiz	ation of amines.	K4	CO-3
24	Α	What are the physical significance	of entropy?	K3	CO-4
			OR		
	В	Derive Gibb's - Duhem equation.		K2	CO-4
25	Α	Write a note on Nernst heat theore	m	K1	CO-5
			OR		
	В	State Hess's law and explain its ap	plications.	K1	CO-5
		Section C Answer ANY THREE Ques	tions (3 x 10 = 30)		
26		Explain the applications of nuclear	fission.	K3	CO-1
27		Explain any five chemical properti	es of monocarboxylic acid.	K1	CO-2
28		How will you separate the mixture	of amines by Hinsberg method?	К3	CO-3

29	Explain in detail about carnot cycle.	K1	CO-4
30	Derive Kirchhoff's equation.	K2	CO-5

## TABLE OF SPECIFICATIONS (Question wise - No. of questions)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

#### TABLE OF SPECIFICATIONS (Marks wise – Total marks)

Outcome/Uni t	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	16	5	0	0	24
II	10	8	1	5	0	0	24
III	5	3	10	6	0	0	24
IV	12	7	5	0	0	0	24
V	11	1	1	0	0	0	24
		2					
Total	41	3	33	16	0	0	120
		0					
#### QP CODE-18U4CHA02

#### VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) DEPARTMENT OF CHEMISTRY B.Sc., DEGREE EXAMINATION MODEL QUESTION- ALLIED CHEMISTRY – II (BOTANY/ZOOLOGY)

Time: 3 Hrs.

Max.Marks:75

		Ansv	ver	all questions $(20 \times 1 = 20)$		
1	Wł	nich technique is used to separate	the	the compounds on the	K1	CO-1
	bas	sis of differencein affinities ofphase				
	Α	Chromatography	В	Polarography		
	С	Thermography	D	Chromography		
2	In dif	which type of chromatographic ference in partition co- efficients?	sej	paration occurs due to	K1	CO-1
	Α	Paper	В	column		
	С	Thin layer				
3	Rf the -	value is the distance travelled by	the	compound to the distance travelled by	K1	CO-1
	Α	Solvent	В	Solute		
	С	Elution	D	All		
4	Wł	to coloured and colourlesssubstance	K3	CO-1		
	Α	Paper	В	Column		
	С	Thin layer	D	HPLC		
5	An	ninoacidscontain fu	ncti	onalgroups	K2	CO-2
	Α	1	В	2		
	С	3	D	4		
6	 ele	is the pH at which ctricfield.	the	e amino acid does not migrate in an	K2	CO-2
	Α	Isoelectricpoint	В	electric point		
	С	Electronicpoint	D	None		
7	Th	e amino acids in a polypeptidechain	arel	inkedby bonds.	К3	CO-2
	Α	Peptide	В	Amino bond		
	С	Covalent	D	Ionic		

#### Section A Answer all questions (20 x 1 = 20

8	Alc	lehyde group present in carbohydra	knownas	K2	CO-2	
	Α	Aldose	В	ketose		
	С	Hexose	D	sucrose		
9	Vit	aminsareclassifiedinto		types.	K2	CO-3
	Α	2	В	3		
	С	4	D	5		
10	Which element present in the chlorophyll?		,	K2	CO-3	
	Α	Mg	В	Ca		
	С	Р	D	СО		
11	Bas	sic unit ofPhorphyrin		K2	CO-3	
••••••	Α	Indole	В	Imdazole		
	С	Quinole	D	Pyrole		
12	Which element is present in thehaemoglob			vin?	K4	CO-3
	A	Cu	В	Ag		
	С	Fe	D	Au		
13	Wh	ich metal found in vitaminB12?		K1	CO-4	
	Α	Со	В	Cu		
	C	Mg	D	Sn		
14	Wh	ich one is example for Narcoticana	lges	ics?	K1	CO-4
	Α	Morphine	В	Papaverine		
	С	salicyladehyde	D	Benzoicacid		
15	Sal	icyladehyde group ofAspirin			K2	CO-4
	A	COOCH3	В	СНО		
	С	Cl	D	NO2		
16	p-a	minophenol used for			K2	CO-4
	Α	Painreliver	В	Anti-inflammatory		
	С	Anti-septicsagen	D	anti-bacterialdrugs		
17	Wh	ich among the following compound	d foi	und only in liquid nature ?	K2	CO-5
	Α	Amine	B	acid		
	С	Monoamide	D	all		
18	Wh	ich compound shows aliphaticnatu	re.?		K1	CO-5
	Α	Carbohydrate	B	amine		
•	С	Monoamide	D	acid		

19	Wł	nich among the following compoun	mong the following compounds contain nitrogen?							
•	Α	Aldehyde	В	amine						
	С	Acid	D	Alcohol						
20	Wł	hich test gives positive result foram	ides	?	K3	CO-5				
	Α	Biurettest	В	Silver mirrortest						
•	С	Lieberrmannstest	D	Phthalein fusiontest.						
		See	ctior	B = 25						
21	A	Difference between paper andcolu	(5 x imno	(5 = 25)	K4	CO-1				
		OR								
	В	Write short notes on methods of s	enar	ation of column chromatography	K3	CO-1				
22	A	Explain the preparation of amino	acid	s byGabrielmethod.	K2	CO-2				
		OR		-						
	В	Write the preparation of glucose.	K4	CO-2						
23	A	Explain the structureofprotein.			K1	CO-3				
<b>5</b>		OR								
•	В	Write short notes on nitrogen fixa	tion.		K4	CO-3				
24	Α	Explain the mode of Action of par	acet	amol&ibuprofen.	К3	CO-4				
•		OR								
	В	Explain the analgesics with examp	ples.		K2	CO-4				
25	Α	Explain the classification of dye b	ased	l onitsstructure.	K1	CO-5				
		OR								
	В	Explain the basic operations in dy	eing	process.	K1	CO-5				
		Section Sectio	on (	$3 \times 10 = 30$						
26		Explain the instrumentation and a	pplic	cation of HPLC.	К3	CO-1				
27		Explain primary structure of prote	ins a	&itsfunction	K1	CO-2				
28		Explain oxygen transport andresp	irati	on.	K3	CO-3				
29		Explain the classification of Anes	cs withexample.	K1	CO-4					
30		How will you identify the given o	K2	CO-5						

TABLE OF SPECIFICATIONS (Question wise - No. of questions)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	16	5	0	0	24
II	1	8	1	5	0	0	24
	0						
III	5	3	10	6	0	0	24
IV	1	7	5	0	0	0	24
	2						
V	1	1	1	0	0	0	24
	1	2					
Total	41	30	33	16	0	0	120

#### QP CODE-18U4CHA02 **`VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN** (AUTONOMOUS)

#### **DEPARTMENT OF CHEMISTRY**

#### **B.Sc., DEGREE EXAMINATION MODEL QUESTION- ALLIED CHEMISTRY – II** (PHYSICS)

Time: 3 Hrs.

Max.Marks: 75

		Ans	wer	all questions $(20 \times 1 = 20)$		
1	Whic	ch of the following is an exampl	e for	coordination compound?	K-2	CO-1
	A	NaCl	В	FeSO ₄ (NH ₄ ) ₂ SO ₄ .H ₂ O		
	C	K ₄ [Fe(CN) ₆ ]	D	MgSO ₄		
2	Exan	nple for a neutral ligand		<u>.</u>	K-4	CO-1
	A	F	В	H ₂ O		
	C	H ₂ O	D	Na ⁺		
3	What	t is the Coordination number of	Cu i	$n [Cu(NH_3)_4]^{2+?}$	K-2	CO-1
	Α	2	В	0		
	С	4	D	1		
4	Calcı	ulate EAN for the complex [Co(	K-1	CO-1		
<b>b</b>	Α	36	В	38		
	С	39	D	40		
5	Amir	noacids contains	<b>i</b>	L	K-2	CO-2
	A	only amino acid group	В	both amino and acid group		
	С	only acid group	D	none		
6	The 1	molecular formula for glucose is	5		K-2	CO-2
	Α	$C_6H_{12}O_6$	В	$C_6H_{10}O_6$		
	C	$C_{12}H_{24}O_{11}$	D	none of these		
7	Starc	ch is a		A	K-4	CO-2
	Α	monosaccharide	В	disaccharide		
	C	polysaccharide	D	none of these		
8	Fruct	tose on reduction gives		Å	K-2	CO-2
•	A	n-butane	В	propane		
	C	n-hexane	D	n-pentane		

## Section A

9	The 1	reaction takes place at anode is	ction takes place at anode is						
	Α	oxidation	В	reduction					
	C	ionisation	D	elimination					
10	Whic	ch of the following is not a refere	ence	electrode?	K-5	CO-3			
	Α	hydrogen	В	platinum					
	C	silver	D	calomel					
11	Calo	mel electrode contains	1	<u>k</u>	K-4	CO-3			
	Α	HgCl	В	Hg ₂ Cl					
	C	Hg ₂ Cl ₂	D	none					
12	The e	electroplating of zinc on iron is c	d	K-1	CO-3				
	Α	valcanisation	В	galvanisation					
	С	both	D	none					
13	The o	drug used to reduce fever is calle	<u> </u>	K-2	CO-4				
	Α	analgesic	В	antipyretic					
	C	antibiotic	D	none of these					
14	Whic	ch one of the following is an anti	etic?	K-1	CO-4				
	Α	dettol	В	penicillin					
	C	aspirin	D	all of these					
15	Whic	ch is one of the following is not a	a pai	in killer?	K-5	CO-4			
	Α	aspirin	B	ibuprofen					
	C	paracetamol	D	coniine					
16	The o	drugs used to block nerve condu	ctio	n to prevent pain	K-2	CO-4			
	Α	antiseptic	В	antipyretic					
	C	antibiotics	D	anaesthetic					
17	The s	substance that imparts colour to	the 1	material is called	K-5	CO-5			
	Α	pigment	В	dye					
	C	both	D	none of these					
18	Indig	go is a			K-4	CO-5			
	Α	Acid dye	В	base dye					
	C	vat dye	D	both a and b					
19	The o	one which intensifies the colour	of tł	ne substrate is called	K-2	CO-5			
	Α	chromophore	В	auxochrome					

C	hypochrome	D	hypochrome					
Azod	lyes contain group		<u>ا</u>	K-4	CO-5			
A	-NO ₂	В	-N=N-					
C	-N=N=N-	D	-NH ₂					
-	Se	ctior	B					
Δ	Answer ANY ONE Define the terms: i) central me	L Qu stal i	estion $(5 \times 5 = 25)$	ΚΔ	CO-1			
	number			111				
		((	DR)					
В	Explain EAN with examples.			К3	CO-1			
Α	Explain the preparation of am	ino a	cids by Gabriel method.	K2	CO-2			
		(0	DR)					
В	How do you convert glucose i	How do you convert glucose into fructose?						
A	Write the principle of Electrop	ng & its uses.	K1	CO-3				
		((	DR)					
В	Explain the terms batteries.			K4	CO-3			
Α	Write a note on the mode of a	ction	of paracetamol & ibuprofen.	K3	CO-4			
		((	DR)					
B	Explain the analgesics			K2	CO-4			
Α	Explain the classification of d	ye ba	ased on structure	K1	CO-5			
		((	DR)					
В	Explain the basic operations in	n dye	eing process.	K1	CO-5			
	Section ANN ONE O	n C	(2 10 20)					
	Answer ANY ONE Que	stior	$1(3 \times 10 = 30)$					
Expl	ain the postulates of Werner's t	heor	у.	K3	CO-1			
Exp	lain any five reactions of glucos		K1	CO-2				
Write	e an elaborate note on electroch	emic	al series and its applications.	К3	CO-3			
Expl	ain in detail about the classifica	tion	of anaesthetics.	K1	CO-4			
Write the preparation of Malachite Green & Crystal Violet.K2CO-5								
	C Azod A C A B A B A B A B A B A B A B A B C C C C	C       hypochrome         Azodyes containgroup         A       -NO2         C       -N=N=N-         Secondation       Secondation         A       Define the terms: i) central means         B       Explain EAN with examples.         A       Explain the preparation of amounder         B       How do you convert glucose i         A       Write the principle of Electrop         B       Explain the terms batteries.         A       Write a note on the mode of action         B       Explain the classification of diamound diamou	ChypochromeDAzodyes contain groupAA-NO2BC-N=N=N-DSection Answer ANY ONE QueADefine the terms: i) central metal in numberADefine the terms: i) central metal in numberADefine the terms: i) central metal in numberAExplain EAN with examples.AExplain the preparation of amino a (CBHow do you convert glucose into fAWrite the principle of Electroplatin (CBExplain the terms batteries.AWrite a note on the mode of action (CBExplain the analgesicsAExplain the classification of dye bac (CBExplain the basic operations in dyeBExplain the basic operations in dyeCAnswer ANY ONE QuestionExplain the postulates of Werner's theoryExplain any five reactions of glucose.Write an elaborate note on electrochemicExplain in detail about the classificationWrite the preparation of Malachite Green	ChypochromeDhypochromeAzodyses contain groupA-NO2B-N=N-C-N=N=N-D-NH2Section BAnswer ANY ONE Question (5 x 5 = 25 )ADefine the terms: i) central metal ion i) Ligand ii) coordination numberBExplain EAN with examples.(OR)BExplain the preparation of amino acids by Gabriel method. $(OR)$ BBHow do you convert glucose into fructose?AWrite the principle of Electroplating & its uses.AWrite a note on the mode of action of paracetamol & ibuprofen. $(OR)$ BBExplain the classification of dys based on structureBExplain the basic operations in dysing process.ASection CAnswer ANY ONE Question (3 x 10 = 30)Explain any five reactions of glucose.Write an elaborate note on electrochemical series and its applications.Explain in detail about the classification of anaesthetics.Write the preparation of Malachite Green & Crystal Violet.	ChypochromeDhypochromeAzodyes containgroupK-4A-NO2B-N=N-C-N=N=N-D-NH2C-N=N=N-D-NH2Section B Answer ANY ONE Question (5 x 5 = 25 )ADefine the terms: i) central metal ion i) Ligand ii) coordination numberK4(OR)Explain EAN with examples.K3AExplain EAN with examples.K3AExplain the preparation of amino acids by Gabriel method.K2BHow do you convert glucose into fructose?K4AWrite the principle of Electroplating & its uses.K1G(OR)K4BExplain the terms batteries.K4AWrite a note on the mode of action of paracetamol & ibuprofen.K3C(OR)K2BExplain the classification of dye based on structureK1(OR)Explain the classification of dye based on structureK1Explain the basic operations in dyeing process.K1Explain the postulates of Werner's theory.K3Explain any five reactions of glucose.K1Write an elaborate note on electrochemical series and its applications.K3Explain in detail about the classification of anaesthetics.K1Write the preparation of Malachite Green & Crystal Violet.K2			

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	3	1	0	0	7
II	1	4	1	1	0	0	7
III	1	3	1	2	0	0	7
IV	3	3	1	0	0	0	7
V	3	3	1	0	0	0	7
Total	20	10	2	2	1	0	35

#### TABLE OF SPECIFICATIONS (Question wise - No. of questions)

#### TABLE OF SPECIFICATIONS (Marks wise - Total marks)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	3	0	16	5	0	0	24
II	1	8	1	5	0	0	24
	0						
III	5	3	10	6	0	0	24
IV	1	7	5	0	0	0	24
	2						
V	1	1	1	0	0	0	24
	1	2					
Total	41	30	33	16	0	0	120

#### **QP CODE-18U4CHN04**

#### VIVEKANANDHA COLLEGE OF ARTS & SCIENCES FOR WOMEN (AUTONOMOUS) DEPARTMENT OF CHEMISTRY B.Sc., DEGREE EXAMINATION IV- SEMESTER MODEL QUESTION-NMEC- FOOD ANDNUTRITION

Time: 3 Hrs.

Max.Marks: 75

#### Section A Answer all questions (75 x 1 = 75)

1	The s	six essential nutrients are		<b>K</b> 1	CO-1	
	A	Carbohydrates,lipids, enzymes,vitamins, minerals, andwater	В	Carbohydrates, proteins, antioxidants, vitamins, minerals, andwater		
	С	Carbohydrates, proteins, fats, vitamins, minerals, and water	D	None of these		
2	What	t are the two forms of carb	ohy	drates ?	K2	CO-1
	Α	Single and Double	В	Simple and Complex		
	С	C Sugars and Starch D None of these				
3	What	t is the main purpose of ca	K2	CO-1		
	A	They provide chemicals to help repair cells and aid in digestion	В	They help regulate hormones and body temperature within the body		
	С	They are the main source of energy for the body.	D	They helps in controlling the emotions		
4	When deve	n a person eats too many o lop	carb	ohydrates over time, that person may	K2	CO-1
	A	Heart disease or cancer.	В	Diabetes or hypoglycemia		
	С	Hypertension	D	Hemophilia		
5	Rice	is the crop which contains	s mo	re amountof	K2	CO-1
	A	Carbohydrates	B	Proteins		

	C	Fats	D	Oils		
6	Mol	ecular formula for Starch is	3		K1	CO-1
	Α	C ₆ H ₁₂ O ₆	В	$C_6H_{10}O_5$		
	C	C ₁₂ H ₂₂ O ₁₁	D	C ₁₂ H ₂₂ O ₁₂		
7	Whi	ch is called as Grape Sugar	K1	CO-1		
	A	Glucose	В	Fructose		
	C	Maltose	D	Sucrose		
8	Whi	ch is present in Cane Sugar	anc	l in Honey?	K1	CO-1
	A	Sucrose	В	Maltose		
	C	Fructose	D	Glucose		
9	Whi	ch solution gives blue colo	K1	CO-1		
	A	Glucose solution	В	Sucrose solution		
	С	Starch solution	D	Lactose solution		
10	Whe	eat, corn, barely, rice and po	otato	bes are rich sources of	. K1	CO-1
	A	Glucose	В	Fructose		
	С	Starch	D	Maltose		
11	Iden	tify the reducing sugar	K1	CO-1		
	Α	Sucrose	В	Cellulose		
	C	Starch	D	Glucose		
12	Whi	ch is a monosaccharide am	ong	the following	K1	CO-1
	A	Cellulose	В	Sucrose		
•	C	Glucose	D	Maltose		
13	Ripe	grapes mainly contains	•••••		K1	CO-1
	A	Glucose	В	Fructose		
	C	Sucrose	D	Maltose		
14	Wha	at foods usually contain satu	urate	ed fats?	K1	CO-1
	A	Beans, nuts, and grains	В	Meats, seafood, and dairy		
	C	Fruits, vegetables, and oils	D	None of these		
15	Prot	eins are not sensitive to	•••••		K1	CO-1
	Α	Acids	В	Bases		
	C	Elevated temperature	D	Water		
16	Whi	ch of the following is the n	common causes of food poisoning?	K1	CO-2	

	А	Red kidney beans	В	Moulds		
	С	Bacteria	D	Toadstools		
17	Whic food	h one of the following s poisoning bacteria usually	tate hav	ments best describes the effect that we upon food?	K1	CO-2
	A	It appears normal but it tastes horrible	В	It appears stale and dry and it has an off taste.		
	С	It tastes, smells and looks normal.				
18	Whic	h one of the following stat	teme	ents is true?	K1	CO-2
	Α	All bacteria are harmful.	В	Some bacteria are harmful		
	С	No bacteria are harmful	D	Only bacterial spores are harmful.		
19	At w multi	hich of the following temp ply most rapidly?	erat	ures will food poisoning bacteria	K1	CO-2
	Α	5°F	В	37°C		
	С	37°F	D	63°C		
20	Whic bacte	h of the following is most ria?	like	ly to be a source of food poisoning	K1	CO-2
	Α	Frozen peas	В	Pasteurized milk		
	С	Tinned salmon	D	Raw meat		
	Which one of the following food poisoning bacteria is transferred to					
21	Whic	h one of the following for	od p	oisoning bacteria is transferred to	K2	CO-2
21	Whic food A	h one of the following for by coughing and sneezing Bacillus cereus	od p ? B	oisoning bacteria is transferred to Salmonella	K2	CO-2
21	Whic food A	h one of the following for by coughing and sneezing Bacillus cereus	od p ? B	Salmonella	K2	CO-2
21	Whic food A C Whic	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following pai	od p ? B D	Salmonella Clostridium perfringens	K2	CO-2
21	Whic food A C Whic poiso	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining?	od p ? B D rs of	Salmonella Clostridium perfringens f people are at special risk from food	K2 K2	CO-2 CO-2
21	Whic food A C Whic poiso A	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children	od p ? B D rs of B	Salmonella Clostridium perfringens f people are at special risk from food Children and old people	K2 K2	CO-2 CO-2
21	Whic food A C Whic poiso A C	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs	od p ? B D rs of B D	Salmonella Clostridium perfringens f people are at special risk from food Children and old people Chefs and nurses	K2 K2	CO-2 CO-2
21 22 23	Whic food A C Whic poiso A C If foc heate	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs of is reheated, to what tem d?	od p ? D rs of B D pera	Salmonella Clostridium perfringens f people are at special risk from food Children and old people Chefs and nurses ture and for how long should it be	K2 K2 K3	CO-2 CO-2 CO-2
21 22 23	Whic food A C Whic poiso A C If foc heate A	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs of is reheated, to what tem d? 70°C for 2 minutes	od p ? B D rs of B D pera B	Salmonella Clostridium perfringens f people are at special risk from food Children and old people Chefs and nurses ture and for how long should it be 50°C for 2 minutes	K2 K2 K3	CO-2 CO-2 CO-2
21 22 23	Whic food A C Whic poiso A C If foc heate A C	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs od is reheated, to what term d? 70°C for 2 minutes 50°C for 10 minutes	od p ? B D rs of B D pera B D	Salmonella Clostridium perfringens f people are at special risk from food Children and old people Chefs and nurses ture and for how long should it be 50°C for 2 minutes 30°C for one hour	K2 K2 K3	CO-2 CO-2 CO-2
21 22 23 24	Whic food A C Whic poiso A C If foc heate A C The r	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs od is reheated, to what term d? 70°C for 2 minutes 50°C for 10 minutes nain symptom of Staphylo	od p ? B D rs of B D pera B D ococc	SolutionSalmonellaClostridium perfringensf people are at special risk from foodChildren and old peopleChefs and nursesture and for how long should it be50°C for 2 minutes30°C for one hourcus food poisoningis	K2 K2 K3 K2	CO-2 CO-2 CO-2
21 22 23 24	Whic food A C Whic poiso A C If foc heate A C The r A	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs od is reheated, to what tem d? 70°C for 2 minutes 50°C for 10 minutes main symptom of Staphylo vomiting	od p ? B D rs of B D pera B D D cococ B	boisoning bacteria is transferred toSalmonellaClostridium perfringensf people are at special risk from foodChildren and old peopleChefs and nursesture and for how long should it be50°C for 2 minutes30°C for one hourcus food poisoningisdiarrhea	K2 K2 K3 K2	CO-2 CO-2 CO-2
21 22 23 24	Whic food A C Whic poiso A C If foc heate A C The r A C	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs od is reheated, to what tem d? 70°C for 2 minutes 50°C for 10 minutes main symptom of Staphylov vomiting fever	od p ? B D rs of B D pera B D ococc B D	ooisoning bacteria is transferred toSalmonellaClostridium perfringensf people are at special risk from foodChildren and old peopleChefs and nursesture and for how long should it be50°C for 2 minutes30°C for one hourcus food poisoningisdiarrheaabdominal pains	K2 K2 K3 K2	CO-2 CO-2 CO-2
21 22 23 24 25	Whic food A C Whic poiso A C If foc heate A C The r A C The r A C	h one of the following for by coughing and sneezing Bacillus cereus Staphylococcus aureus h one of the following paining? Nurses and children Old people and chefs od is reheated, to what term d? 70°C for 2 minutes 50°C for 10 minutes nain symptom of Staphylov vomiting fever is an adulterant	od p ? B D rs of B D pera B D ococc B D	ooisoning bacteria is transferred to         Salmonella         Clostridium perfringens         f people are at special risk from food         Children and old people         Chefs and nurses         ture and for how long should it be         50°C for 2 minutes         30°C for one hour         cus food poisoningis         diarrhea         abdominal pains	K2 K2 K3 K2 K1	CO-2 CO-2 CO-2 CO-2

	С	Iron filings in tea All of the above		All of the above		
26	The f	full form of PFA is	ע		K4	CO-2
		Drevention of Food Act	Б	Protection of Food Act		
	А	Prevention of Food Act	в	Protection of Food Act		
	С	Prevention of Food Adulteration	D	None of the above is correct		
27	State those adult	ment 1: Adulteration take sold packed. Statement erated than solidlumps.	es pla 2:	ace more in loosely sold items than Powder and paste forms are more	К3	CO-2
	A	True, False	В	True, True		
	С	False, False	D	False, True		
28	Why	are adulterants added in th	ne fo	od ?	K2	CO-2
	A	To increase shelf-life of products. E.g Urea	В	To improve flavor color and appearance		
	C	To sell lesser quantity at the same price	D	All the mentioned		
29	Meth	ods for detection of comm	non a	dulterants are	K4	CO-2
	A	Visual tests	В	Chemical tests		
	C	Physical tests	D	All of the mentioned		
30	Coffe	e is adulterated with	•••••	······	K3	CO-2
	A	Chicory	B	Saw dust		
	C	Ghee	D	All of these		
31	Whic food	h of the following is a factor	actoi	that affects the storage stability of	K2	CO-3
	A	Type of raw material used	В	Quality of raw material used		
	C	Method/effectiveness packaging	D	All of the mentioned		
32	Whic stora	h of the following se ge/preservation?	nten	ce is true with respect to food	K2	CO-3
	A	Each food type has potential storage life	В	The mechanical abuse that foodHasreceivedduringstorage/distribution		
	C	All of the mentioned	D	None of the mentioned		
33	<ul> <li>Statement 1: Foods ofplant origin can be used as additives for food preservation.</li> <li>Statement 2: Dry fruits and seeds are the most important higher plant structures used as food.</li> </ul>					CO-3
	A	True, False	B	True, True		
	C	False, False	D	False, True		

34	Whic true?	h of the following statem	with respect to food preservation is	K6	CO-3	
	A	Leafy vegetables perish fast due to their high moisture content	В	Cereals have the highest requirements of moisture and soil types		
	С	Cereal can be grown with less labour and yield of food is high	D	All of the mentioned		
35	Bacte	eria and yeast can	•••		K2	CO-3
	A	Grow with or without air	В	Need humid/warm conditions to grow		
	C	Need more moisture than molds	All the mentioned statementsare correct			
36	Whic prese	h of the following fact rvation industry?	is	correct with respect to the food	K2	CO-3
	A	Majority of high quality foods in the world are the highly perishable food items	В	More people with more than adequate standard of living exist and hence the demand for safe preserved food is growing		
	С	Food preservation market is going to boom as more people are shifting to areas where there is more industrial growth	D	All of the mentioned statements are correct		
37	State	ment 1: Shellfish are consument 2: Polished rice is jus	imec	d by local people.	K1	CO-3
	A	True, False	B	True, True		
	С	False, False	D	False, True		
38	Food	processing in India is cond	centi	rated in which sector, maximum?	K1	CO-3
	Α	Organized Sector	B	Unorganized sector		
	С	Small Scale	D	None of the mentioned		
39	Paste	purization is the process of	heat	ing milk at what temperature?	K2	CO-3
	Α	Above 121 degree Celsius	В	Above boiling point		
	С	Below boiling point	D	Above 150 degree Celsius		
40	The 1	eason for food spoilage is.	•••••		K2	CO-3
	A	Growth of microorganisms like bacteria, fungus etc	B	Autolysis		
	C	Oxidation by air that causes rancidity	D	All of these are correct		

41	All th	ne following techniques an	K4	CO-3		
	A	Smoking	В	Lyophilisation		
	С	Dehydration	D	Salting		
42	The p dehy	process of preserving the f dration under vacuum is c	ood alled	by rapid freezing followed by	K2	CO-3
	Α	Lyophilisation	В	Sterilization		
	С	Cold dehydration	D	Cryopreservation		
43	Aceti	ic acid and lactic acid are	for	K1	CO-3	
	Α	Curing meats	Preservation of color			
	С	Preservation of pickles	D	Inhibiting mold growth		
44	Steri	lization occurs at high tem	pera	tures for long periods of time.	K4	CO-3
	Α	True	В	False		
	С	None	D	None		
45	Phos follo	phatase enzyme present wing processes?	in 1	nilk is destroyed in which of the	К3	CO-3
	Α	Sterilization	В	Canning		
	С	Dehydration	D	Pasteurization		
46	Whic	th of the following is not a	ı fat-	solublevitamin?	<b>K</b> 1	CO-4
	Α	Vitamin D	В	Vitamin K		
	С	Vitamin C	D	Vitamin A		
47	Whic	h of the following vitamin	n is a	lso known as cobalamin?	K2	CO-4
	Α	Vitamin B11	В	Vitamin B12		
	С	Vitamin B6	D	Vitamin B2		
48	Whic	h of the following vitamin	ı ser	ves as a hormone precursor?	K2	CO-4
	Α	Vitamin C	В	Vitamin A		
	С	Vitamin K	D	Vitamin D		
49	Vitar	nin C is present in	••••	· · · · · · · · · · ·	K1	CO-4
	Α	Tomatoes	В	Papaya		
	С	Guava	D	All of these		
50	Name	e a substance that makes a	vita	min metabolically ineffective?	K3	CO-4
	Α	Anti - vitamin	В	Antioxidants		
	С	Cynocobalamine	D	Riboflavinosis		

51	A no	rmal healthy manrequires	of VitaminB2.	K4	CO-4	
	Α	120 mg	150 mg			
	С	170 mg	D	190 mg		
52	Whic	ch Vitamin helps in promo	oting	growth of children and increase	K2	CO-4
	in the	e RBC level?	л			
	A	Vitamin BI	В	Vitamin B2		
	C	Vitamin B6	D	Vitamin B12		
53	Vitar	nin E is also called as	••••		K2	CO-4
	Α	Calciferol	В	Tocopherol		
	С	Menadione				
54	Whic	ch of following is a good a	ch source of Vitamin 'C' ?	K1	CO-4	
	Α	Milk	В	Radish		
	С	Mango	D	Banana		
55	Vitar	nin 'A' is necessary in our	bod	yfor	K2	CO-4
	Α	Prevention of blood	Synthesis of hemoglobin			
	С	Proper vision	D	Improving Digestion		
56	Whic	ch of the following fruits a	re no	ot rich source of VitaminC?	K1	CO-4
	Α	Dates	В	Orange		
	C	Lemon	D	Guavas		
57	Live	is rich of	••••		<b>K</b> 1	CO-4
	Α	Carbohydrate	В	Fat soluble vitamins		
	С	Lipids	D	Proteins		
58	The _l	presence of cobalt in Vitan	nin E	312 can be detected by	K4	CO-4
<b>b</b>	Α	Spectroscopy	В	Borax – bead test		
	С	Sodium nitroprusside	D	Hydrolysis test		
59	Whic	ch organ stores fat soluble	vitar	nins?	K1	CO-4
	Α	Blood	В	Skin		
	С	Liver	D	Pancreas		
60	Whic	ch of the following is the ri	ch s	ource of Vitamin A?	K2	CO-4
	Α	Egg yolk	В	Leafy vegetables		
	C	Chocolate	Cardamom			
61	Whic	ch one of the following ele	ment	t is required for muscle contraction?	K1	CO-5

	A	Calcium	В	Iron				
	С	Sodium	D	Zinc				
62	A per are ri	rson suffering from high	blood	d pres	sure	should avoid foods which	K3	CO-5
	Α	Sodium			В	Iodine		
	С	Calcium			D	Iron		
63	Whic our h	h are three following pri- uman body?	mary	nutri	ents	needed for our growth of	K1	CO-5
	A	Calcium, Sulphur and M	lagne	sium	В	Nitrogen, Phosphorus and Potassium		
	С	Zinc, Boron and Copper			D	Calcium, Zinc and Copper		
64	Defic	iency of which mineral ca	uses	dark g	greei	n coloration of the leaves?	K4	CO-5
	Α	Phosphorus			В	Potassium		
	C	Nitrogen			D	Calcium		
65	Whic	h one the following is the	impo	ortant	sour	ces for sodium mineral?	K5	CO-5
	Α	Meat			В	Dairy products		
	С	Table salt			D	Leafy vegetables		
66	The i	mportant energy rich nutr	ient c	of calc	ium	mineral is	K2	CO-5
	Α	Fish			В	Legumes		
	С	Meat			D	Tea		
67	What daily	is the average level of c diet?	calciu	ım ric	h fo	od should be taken in our	K4	CO-5
	Α	700 mg/day			В	1000 - 1200 mg/day		
	С	260 mg/day			D	500 mg/day		
68	What	is the important function	of M	lagnes	sium	mineral inhuman?	K1	CO-5
	Α	Amino acid synthesis			В	Cholesterol metabolism		
	С	ATP Stabilization			D	Fluid balance		
69	What daily	amount of Magnesium diet?	mine	eral is	req	uired to take through our	K1	CO-5
	А	700 mg/day			В	310 - 420 mg/day		
	С	1000 - 1200 mg/day			D	260 mg/day		
70	What	is the important function	of Ir	on mii	neral	in our human body?	K2	CO-5
	Α	Regulates Protein synthe	esis		В	Antioxidant		
	С	Improving immune func	tion		D	Fluid balance		

71	What body	is the important function of 2?	rus mineral in our human	K2	CO-5		
	A	Antioxidant		В	Improving immune function		
	С	pH balance		D	Fluid balance		
72	What	are the important sources of Pho	osph	orus	mineral?	K4	CO-5
	А	Sea food	Tea				
	C	Cereals					
73	All o	f the following are the component	K2	CO-5			
	A	Carbohydrates	В	Pro	oteins		
	C	Vitamins	D	Fib	er		
74	Impo	ortant nutrients required to our hu	ımar	ı boc	ly are	<b>K</b> 1	CO-5
	A	Carbohydrates	В	Vit	amins		
	C	Proteins and Minerals	D	Fat	S		
75	The years	recommended daily requirements of age is	nt of	f Iro	n for women of 18 – 55	K3	CO-5
	Α	5 mg	ıg				
	C	10 mg	D	15	mg		

### TABLE OF SPECIFICATIONS (Question wise - No. of questions)

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	1	4	-	-	-	-	15
	1						
II	6	4	3	2	-	-	15
III	3	7	1	3	-	1	15
IV	6	6	1	2	-	-	15
V	5	4	2	3	1	-	15
Total	31	25	7	10	1	1	75

Outcome/Unit	K1	K2	K3	K4	K5	K6	Total
	(Remembering)	(Understanding)	(Applying)	(Analyzing)	(Evaluating)	(Creating)	
Ι	1	4	-	-	-	-	15
	1						
II	6	4	3	2	-	-	15
III	3	7	1	3	-	1	15
IV	6	6	1	2	-	-	15
V	5	4	2	3	1	-	15
Total	31	25	7	10	1	1	75

#### TABLE OF SPECIFICATIONS (Marks wise - Total marks)

HOMEN EMPONENTIAL	VIVEKANA	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	B.Sc	Programme Code			U	СН	Regulati	ons	20	18-2019				
Department	С	hemistry				Semester	1			5				
Course Code	Со	urse Name	Pe per	erioc We	ls æk	Credit	Maximum N		n N	Iarks				
			L	Т	Р	С	CA	ES	E	Total				
18U5CHCO5	CORE PAPE ORGANIC C	R-V: HEMISTRY-I	5			05	25	75	5	100				
Course	1. To gain kno	wledge about stereoise	omeri	sm.										
Objectives	<ol> <li>Acquire the</li> <li>To understat</li> </ol>	knowledge about hete nd the reaction mechai	erocyc nism	les. and	reag	gents in organ	nic synthe	sis.						
POs		PROG	RAM	IMF	εοι	UTCOME								
PO 1	Capable of der disciplines.	nonstrating comprehe	nsive	kno	wle	dge and und	erstanding	g of o	one	or more				
PO 2	Demonstrate t complex inform	he ability to listen c nation in a clear and c	arefu oncis	lly, e m	reac anne	l and write er to differen	analytical t groups.	lly, a	ınd	present				
PO 3	Capability to evidence, argu	apply analytic though ments, claims, beliefs	nt to on th	a b e ba	ody .sis c	of knowled of empirical	ge; analys evidence.	se ar	nd	evaluate				
PO 4	Apply one's le	arning to real life situa	ations	•										
PO 5	Analyse and sy	nthesise data from a v	variet	y of	sou	rces.								
PO 6	Establish hypo report the result	theses, predict cause-a lts of an experiment or	and-e r inve	ffec stiga	t rela atior	ationships; a 1.	bility to p	lan, e	exe	cute and				
PO 7	Ability to worl coordinated eff	k effectively and respe fort on the part of a gr	ectful oup.	ly w	rith c	liverse team	s; facilitat	e coo	ope	rative or				
PO 8	Ability to anal	yse, interpret and drav	v con	clusi	ions	from quantit	tative/qual	litativ	ve c	lata.				
PO 9	Critical sensibiand society.	ility to lived experiend	ces, v	vith	self	awareness a	nd reflexi	vity (	of ł	ooth self				
PO 10	Capability to u evaluate, and u	use ICT in a variety on use a variety of relevar	f lear nt info	ning orma	g situ ation	uations, dem	onstrate a	bility	y to	access,				
PO 11	Ability to worl	k independently, ident	ify ap	proj	priat	e resources 1	required for	or a p	oroj	ect.				
PO 12	Possess know perspective.	ledge of the values	and	bel	iefs	of multiple	e cultures	s and	d a	ı global				
PO 13	Appreciating e and truthful ac	environmental and sus tions in all aspects of	taina work.	oility	y iss	ues; and add	opting obj	ectiv	e, ι	inbiased				
PO 14	Building a tea members.	am who can help ac	chieve	th	e vi	sion, motiva	ating and	insp	oiriı	ng team				
PO 15	Ability to acqu	ire knowledge and ski	ills.											

COs	COURSE OUTCOME
CO 1	Student will be able to get an insight into basic concept of stereoisomerism.
CO 2	Students will be skilled in solving the problems related to isomerism.
CO 3	Students will have a firm foundation in the fundamentals of heterocyclic chemistry, methods of synthesis and application of those methods for the preparation of specific groups of heterocyclic systems.
CO 4	Students will have a clear understanding of mechanisms in organic reactions.
CO 5	Students will be skilled enough to choose a reagent to carry out organic reactions.
Pre-requisites	

	KNOWLEDGE LEVELS														
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing															
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos KL s POs										3	,	cuix)	KI	s	
	-								PO	1			1		
CO	1				1				PO	2			3		
								PO	3			5			
								PO 4	4			2			
CO				3				PO :	5			4			
									PO	5			2		
CO	2								PO '	7			6		
	CO 3				2				PO 8			4			
								PO 9				2			
0	4			1					PO I	0			3		
	т		4						PO I	2			5		
								PO 12				4			
СО	5				3			PO 14				2			
				5				PO 15				1			
						<b>CO</b> /]	PO Ma	pping		-					
		(3/2/	l indica	ates the	streng	th of co	orrelati	on, 3-st	trong, 2	2-mediu	ım, 1-w	eak)			
~~~						Pr	ogram	me Ou	tcome	(POs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
C01	3	1	1	2	1	2	1	1	2	1	3	1	1	2	3
CO2	1	3	1	2	2	2	1	2	2	3	1	1	2	2	1
CO3	2	2	1	3	1	3	1	1	3	2	2	1	1	3	2
CO4	1	2	2	1	3	1	1	3	1	2	1	2	3	1	1
CO5	1	3	1	2	2	2	1	2	2	3	1	1	2	2	1

Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect

1. Course End Delivery

Content of the Syllabus									
	Stereochemistry-I	Periods	12						
Unit - I	Stereoisomerism - definition - classification into optical ar optical isomerism - optical activity - conditions for optical - achiral molecule - elements of symmetry - meaning of + Racemization - methods of racemization - Resolution - met inversion - Notations for optical isomers: Cahn-Ingold-Pr Erythro and threo representations.	activity - asymptotical activity - asymptotic and - , d and hods of resolution elog rules - R-	isomerism – metric centre l notations - tion -Walden S notation -						
	Stereochemistry-II	Periods	12						
Unit - II	Optical activity in compounds containing no asymmetric car spiranes - Optical activity of lactic and tartaric acid - Geom syn-anti, E-Z notations - Geometrical isomerism in maleic a of distinguishing geometrical isomers: dipole moment, hydrogenation.	rbon: biphenyls etrical isomeris nd fumaric acio dehydration	allenes and sm: cis-trans, ds - Methods and heat of						
	Heterocyclic compounds	Periods	12						
Unit - III	Heterocyclic compounds: five membered and fused hetero thiophene and indole - structure, preparation and prope reactivity of pyrrole, furan and thiophene towards electrop preparation of six membered and fused heterocyclic comp isoquinoline	cyclic rings: py rties - aromat philic substitut pounds: pyridin	vrrole, furan, icity-relative ion reaction- e, quinoline,						
	Molecular rearrangements	Periods	12						
Unit - IV	Benzil-benzilic acid, Wolff, Beckmann, Cope, Hofmann, and Fries rearrangements.	Curtius, Favor	ski, Schmidt						
	Reagents of synthetic importance	Periods	12						
Unit - V	Sodium borohydride, Lithium aluminium hydride, bromosuccinimide, Osmium tetraoxide, Periodic acid, Grignard reagent.	Manganese d Ziegler-Natta	lioxide, N- catalyst and						
	Total Periods60								

Text Book	s
1	I.L. Finar, Organic chemistry Vol I sixth edition, ELBS, Pearson Education Ltd., 2004
2	I.L. Finar, Organic chemistry Vol II fifth edition, ELBS, Pearson Education Ltd., 2012
3	O.P. Agarwal, Reactions and Reagents, Krishna prakashan media (p) Ltd., 1975
4	P.S. Kalsi, Stereochemistry, Conformation and Mechanism, New Age International (p) Ltd, VIIth, 2008.
5	B.S. Bhal and Arun Bhal, A text book of organic chemistry, S.Chand & company ltd, 1948.
Reference	s
1	K.S.Tewari, and N.K.Vishoni, Organic Chemistry, Vikas Publishing House.
2	P.L. Soni and H.M. Chawla Text book of organic chemistry, 26th revised edition, Sultan chand and sons, 1995.
3	R.T.Morrison and Boyd, Organic Chemistry, VIth edition, PHI Learning Pvt Ltd., 2008.
4	M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co. 2018.
5	B. Mehta and M. Mehta, Organic Chemistry, PHI learning Publishers.
E-Referen	ices
1	https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Isomerism_in_Organic_Compounds/Optical_Isomerism_in_Organic_Molecules
2	https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Isomerism_in_Organic_Compounds/Geometric_Isomerism_in_Organic_Molecules
3	http://www.3rd1000.com/chem301/chem302a.htm
4	https://www.scribd.com/doc/97295442/Molecular-Rearrangements
5	https://www.wiley.com/en-us/Molecular+Rearrangements+in+Organic+Synthesis-p-9781118347966

HONEN ENDONERINGI	VIVEKANAN	DHA COLLEGE OF (AUTO) Elayampalayam, T	ARTS NOM(iruche	AN DUS ngoo	D S (5) de-63	C IENCES FC 37 205.	OR WOMI	EN	TÜVRHA	ISO 8001:2008		
Programme	B.Sc Programme Code UCH Regulations 2018-2019											
Department	Chemistry Semester 5											
Course Code	Co	Periods Course NamePeriods per WeekCreditMaximum Mark										
			L	Т	Р	С	CA	ES	SE	Total		
18U5CHCO6	CORE PAPE	R-VI: CHEMISTRY-I	5			05	25	7.	5	100		
Course Objectives	 To help the develop their of To learn the 	e student to understan critical thinking. basics and application	d the	bas the i	ic c norg	oncepts in in ganic compo	organic c 1nds.	hem	istr	y and to		
	3.To learn the	coordination complex	es and	l lin	nitat	ion.						
POs		PROG	RAN	IME	E OI	UTCOME						
PO 1	Capable of der disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines										
PO 2	Demonstrate t complex infor	he ability to listen c mation in a clear and c	arefu concis	lly, e m	read anno	d and write er to differen	analytical t groups.	lly, a	and	present		
PO 3	Capability to evidence, argu	apply analytic though ments, claims, beliefs	ht to on th	a b e ba	ody sis o	of knowled of empirical of	ge; analys evidence.	se a	nd	evaluate		
PO 4	Apply one's le	arning to real life situ	ations									
PO 5	Analyse and s	ynthesise data from a	variet	y of	sou	rces.						
PO 6	Establish hypo report the resu	theses, predict cause- lts of an experiment of	and-e r inve	ffec stig	t rel atio	ationships; a n.	bility to p	lan,	exe	cute and		
PO 7	Ability to wor coordinated ef	k effectively and respo fort on the part of a gr	ectful oup.	ly w	ith (diverse teams	s; facilitat	e co	ope	rative or		
PO 8	Ability to anal	yse, interpret and drav	v con	clusi	ions	from quantit	ative/qual	litati	ve o	lata.		
PO 9	Critical sensib	ility to lived experien	ces, v	/ith	self	awareness a	nd reflexi	vity	of l	ooth self		
PO 10	and society. Capability to evaluate, and u	use ICT in a variety of relevant	of lear	ning	g sit atior	uations, dem	onstrate a	bilit	y to	access,		
PO 11	Ability to wor	k independently, ident	ify ar	pro	pria	te resources r	required for	or a	proj	ect.		
PO 12	Possess know perspective.	ledge of the values	and	bel	iefs	of multiple	e cultures	s an	d a	a global		
PO 13	Appreciating and truthful ac	environmental and sustions in all aspects of	taina work.	oilit	y iss	sues; and add	pting obj	ectiv	/e, 1	unbiased		
PO 14	Building a te members.	am who can help ac	chieve	th	e vi	sion, motiva	ating and	ins	piriı	ng team		
PO 15	Ability to acqu	ire knowledge and sk	ills.									

COs	COURSE OUTCOME
CO 1	Students known basics in acid and bases
CO 2	Students able to understand the solvents
CO 3	Students enhanced their knowledge of coordination complexes
CO 4	Students learn the importance of f- block elements
CO 5	Students will be able to interpret the applications of inorganic compounds in day to day life.
Pre-requisites	

	KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing																
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation - 3 strong - 2 modium - 1 week)																
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)																
Cos	S				KLS				PO	3				.S		
CO	1				1				PO	1 7			2			
	1								PO .	2			5			
									PO	5 4			1			
СО	2				3				PO	+			1			
									PO	5 <u> </u>			3			
									PO	7			6			
CO	3				2			PO 8				3				
									PO 9				1			
							PO 10				2					
CO	4			4				PO 11				4				
									PO 1	2			4			
	-				-				PO 1	.3			2			
СО	5			5					PO 14				2			
									PO 1	.5			5			
		(2.12.1				CO/1	PO Ma	pping				• \				
		(3/2/	I indica	ates the	streng	th of co	orrelati	on, 3-s	trong,	2-mediu	ım, 1-w	eak)				
COs			1		1	Pr	ogram	me Ou	tcome	(POs)		1			1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	2	1	1	3	1	1	1	1	3	2	1	1	2	2	1	
CO2	2	3	1	1	2	3	1	3	1	2	2	2	2	2	1	
CO3	3	2	1	1 2 1 2 1 2 3 1 1								1	3	3	1	
CO4	1	2	2	1	3	2	1	2	1	1	3	3	1	1	2	
CO5	1	1	3	1	2	1	2	1	1	1	2	2	1	1	3	

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

	Content of the Syllabus		
	Modern Concepts of Acids and Bases	Periods	12
Unit - I	Acids and Bases - Arrhenius concept - Bronsted - Lowry co Lewis concepts of acids and bases - Usanovich concept - C Relative strength of acids and bases: Hydracids & Differentiating solvents - Solvent system concept. Hard a Classification of acids and bases as hard and soft – ex- Principle and its applications.	oncept - Luxflo Conjugate acid - Oxyacids - I nd Soft Acids amples - Pears	od concept - base pairs - Levelling & and Bases - son's HSAB
	Non-Aqueous Solvents	Periods	12
Unit - II	Classification of solvents - General Characteristics of a aqueous solvents with reference to liq NH ₃ , Solutions of al SO ₂ , anhydrous H ₂ SO ₄ , liq.HF, and molten salts.	solvent, Read kali metals in a	ction in non ammonia, liq
	Chemistry of f-Block Elements	Periods	12
Unit - III	Position in the periodic table - general characteristics of l Lanthanide contraction and its consequences - Isolation of including the Ion exchange resin methods - Actinides - or Chemistry of thorium and uranium.	Lanthanides an Lanthanides fro ccurrence and j	d Actinides- om monazite preparation -
	Coordination Chemistry-I	Periods	12
Unit - IV	Definition and classification of ligands - Nomenclature nuclear complexes - chelating ligands - chelate effect - stereochemistry of complexes - Isomerism in complexes - s isomerism - geometrical isomerism and optical isomerism complexes – Werner's theory & its evidences - Sidgwick applications.	of mononucle coordination tructural isome in 4 and 6 theory - EAN	ar and poly number and rism - stereo coordinated rule and its
	Coordination Chemistry-II	Periods	12
Unit - V	Theories of bonding in complexes: VB theory - postu Geometry of complexes - Outer orbital and inner orbital oct planar - tetrahedral complexes - Magnetic properties of cor theory. Crystal Field Theory - postulates - d orbital splittin and square planar complexes - strong and weak field ligands High spin and Low spin complexes - Colour and Magnetic CFSE and its uses - Limitations of CFT-Comparison betwee	lates - Hybrid ahedral comple nplexes - limita in octahedra s - Spectro cher c properties of n VBT and CF	dization and exes - Square ations of VB l, tetrahedral nical series - complexes - Γ.
	Total Periods		60

Text l	Books
1	Puri, Sharma, Kalia, Principles of Inorganic Chemistry 32nd Edition (2014), Milestone Publishers and Distributor,
1	New Delhi, Wahid. U. Malik, G. D. Tuli,
2	R. D. Madan, Selected topics in Inorganic Chemistry, S. Chand & company, New Delhi.
Refer	ences
1	S. Prakash, G.D. Tuli, S.K. Basu and R.D. Madan, Advanced Inorganic Chemistry - Vol - I (2006), S. Chand Publishing, New Delhi.
2	S. Prakash, G.D. Tuli, S.K. Basu and R.D. Madan, Advanced Inorganic Chemistry - Vol - II (2006), S. Chand
2	Publishing, New Delhi.
E-Ref	erences
1	https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry
1	https://eit.wikibooks.org/wiki/initioduction_to_morgane_Choinistry

HOUR ENDOREMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	B.Sc	Programme Code	de UCH Regulations 2018-2019										
Department	C	Chemistry Semester 5											
Course Code	Periods per WeekCreditMaximum												
			L	Т	Р	С	CA	ES	E	Total			
18U5CHCO7	CORE PAPE PHYSICAL C	CORE PAPER-VII: PHYSICAL CHEMISTRY-I552575100											
C	1. To facilitat reactions.	e the students to st	udy	aboı	ut ti	he nature of	solution	ıs, k	ineti	ics of			
Objectives	2. To learn the	concepts of chemical	equil	ibriu	ım.								
objectives	3. To acquaint chemical reaction	the knowledge for dealors.	rivati	on o	f rea	action rates,	rate const	ants	of v	arious			
POs		PROG	RAM	MF	E OI	UTCOME							
PO 1	Capable of den disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.											
PO 2	Demonstrate the complex inform	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.											
PO 3	Capability to a evidence, arguing	apply analytic though ments, claims, beliefs	nt to on th	a b e ba	ody .sis o	of knowled of empirical e	ge; analy evidence.	se ai	nd e	evaluate			
PO 4	Apply one's lea	arning to real life situa	ations	•									
PO 5	Analyse and sy	onthesise data from a v	variet	y of	sou	rces.							
PO 6	Establish hyporreport the result	theses, predict cause-a ts of an experiment or	and-e inve	ffec stiga	t rel atio	ationships; al n.	bility to p	lan, e	exec	ute and			
PO 7	Ability to work coordinated eff	c effectively and respectively on the part of a gr	ectful oup.	ly w	rith o	diverse teams	s; facilitat	e coo	oper	ative or			
PO 8	Ability to analy	yse, interpret and drav	v con	clusi	ions	from quantit	ative/qua	litati	ve d	ata.			
PO 9	Critical sensibiand society.	lity to lived experience	ces, w	vith	self	awareness a	nd reflexi	vity	of b	oth self			
PO 10	Capability to u evaluate, and u	se ICT in a variety o se a variety of relevar	f lear nt info	ning orma	g sit atior	uations, dem 1 source.	onstrate a	ıbilit	y to	access,			
PO 11	Ability to work	independently, ident	ify ap	proj	pria	te resources r	equired fo	or a p	oroje	ect.			
PO 12	Possess know perspective.	ledge of the values	and	bel	iefs	of multiple	e culture	s an	d a	global			
PO 13	Appreciating e and truthful act	nvironmental and sus	tainal work.	oility	y iss	sues; and add	pting obj	ectiv	re, u	nbiased			
PO 14	Building a tea members.	um who can help ac	chieve	th	e vi	sion, motiva	ting and	insp	pirin	ig team			
PO 15	Ability to acqu	ire knowledge and ski	ills.										

COs	COURSE OUTCOME
CO 1	Students will learn the laws of solutions and deviations of solution w.r.t. pressure, temperature and volume
CO 2	Students can understand fundamental concepts of chemical equilibrium.
CO 3	Students will have enhanced knowledge towards advanced conception of chemical equilibrium.
CO 4	Students will able to understand and explain the theories of chemical kinetics.
CO 5	Students will be skilled in solving the problems of Kinetics.
Pre-requisites	

Г

					KN	OWL	EDGE	LEVE	LS							
1.Rememberin	ng, 2.U	nderst	anding	, 3.Appl	lying, 4	.Analy	zing, 5.	.Evalua	ating, 6	.Synthe	sizing					
				_	С	0 / PO	/ KL N	Mappin	ıg							
		(3/2/	1 indica	ates the	streng	th of co	orrelati	on, 3-s	trong, 2	2-mediu	ım, 1-w	eak)				
Co	s				KLs				POs	3			KL	.s		
									PO	1			2			
CO	1				2				PO	2			1			
									PO	3			4			
	-								PO	4			2			
CO	2				5				PO	5			3			
									PO	6			5			
CO	2								PO '	7			3			
	3			3				PO 8				6				
									PO 9				2			
CO	1			6				PO 10				3				
	4							PO 11				1				
									PO 1	2			4			
СО	5							PO 13				2				
	c			4					PO 14				5			
						<u>CO / 1</u>	PO Ma	nning	PUI	3			5			
		(3/2/	1 indic	ates the	streng	th of co	orrelati	on, 3-s	trong, 1	2-mediu	ım, 1-w	eak)				
					0	Pr	ogram	me Ou	tcome	(POs)	,	,				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	3	2	1	3	2	1	2	1	3	2	2	1	3	2	1	
CO2	1	1	2	1	1	3	1	2	1	1	1	2	1	1	3	
CO3	2	1	2	2	3	1	1	1	2	3	1	2	2	3	1	
CO4	1	1	1	1	1	2	1	3	1	1	1	1	1	1	2	
CO5	1	1	3	1	2	2	2	1	1	2	1	3	1	2	2	

	Course Assessment Methods	
Direct		
 Continuou Assignment End Seme 	ns Assessment Test I, II & Model nt ster Examinations	
Indirect		
1. Course En	d Delivery	
	Content of the Syllabus	
	Solutions Periods	12
Unit - I	Solutions of gases in liquids – Henry's law - solutions of liquids in liquid law. Ideal solution - Binary liquid mixture - deviation from ideal Thermodynamics of ideal solutions - V-P-composition curves, V-P-tempera Azeotropic distillation. Theory of fractional distillation, Steam Determination of Solubility, Solubility Curves. Nernst's distribution law properties-Introduction, Thermodynamic derivations, applications and Thermodynamic derivation of elevation of boiling point and depression point- Van't Hoff factor- Abnormal molecular mass.	ls – Raoult's behavior - ture curves - distillation, - Colligative limitations. of freezing
Unit - II	Chemical Equilibrium- IPeriodsReversible reactions - nature of chemical equilibrium - definition, chara chemical equilibrium - Law of mass action. Equilibrium Law - Derivation - constant expression in terms of general and concentration, partial pressu fraction- Heterogeneous equilibrium - Related problems. Thermodynamic - law of chemical equilibrium (Kp, Kc and Kx)- Relations between Kp, Problems related to Kp and Kc.	12 acteristics of equilibrium re and mole derivation of K_c and K_x -
Unit - III	Chemical Equilibrium- IIPeriodsEquilibrium law for ideal gases - Effect of inert gas on reaction equChatelier's principle - effect of change in concentration, pressure andDerivation of van't Hoff reaction isotherm. de-Donder's treatmentequilibria -Donnan Equilibrium membrane- concept of chemical affinities.dependence of equilibrium constant – van't Hoff Isochore - Pressure deequilibrium constant.	12 ilibrium. Le temperature. of chemical Temperature pendence of
Unit - IV	Chemical Kinetics-IPeriodsChemical kinetics and its scope - rate of a reaction, factors influencing th reaction. Order and molecularity of a reaction: Definition, types - differe order and molecularity - Derivation of rate constant and half life period f order reactions - Derivation of rate constant for second order (same and different concentrations) and third order reactions (same initial concentrations only) determine the order of the reaction - Isolation and half life methods. complex reactions. Parallel and consecutive reactions only.	12 e rate of the nce between or zero, first ferent initial . Methods to Kinetics of
Unit - V	Chemical Kinetics-IIPeriodsTheories of chemical kinetics: Arrhenius equation, effect of temperature reaction, concept of activation energy. Collision theory of reaction rates- Derivation of rate constant for bimolecular reaction from collision theory CT. Lindemann theory - Introduction, Derivation of rate constant for reaction. Theory of absolute reaction rates- Introduction, Thermodynamic or rate constant for bimolecular reaction based on ARRT.Total Periods	12 e on rate of introduction, , Failures of unimolecular derivation of 60

Text	Books
1	A. Bahl, B.S. Bahl and G.D. Tuli, Essentials of Physical Chemistry, Revised multicolor edition, S. Chand publication Ltd, New Delhi, 2010.
2	B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, (47th edition) Vishal Publishing Co., New Delhi, 2017.
3	N. Kundu and S.K. Jain, Physical Chemistry, S. Chand & Company Ltd, New Delhi, 1990.
Refer	rences
1	P. Atkins and J.D. Paula, Physical Chemistry, 7th Edn, Oxford University Press, New York, 2002.
2	J.Rajaram and J.C.Kuriacose, Kinetics and mechanisms of chemical transformations, First edition,
2	Macmillan Publishers India Ltd, New Delhi, 2011.
2	R.P.Rastogi and R.R.Misra, An introduction to chemical thermodynamics, 6th revised edition, Vikas
5	Publishing House Pvt. Ltd, New Delhi, 2005.
E-Re	ferences
1	https://www.britannica.com/science
2	https://www.chemqueries.com
3	https://socratic.org/Chemistry
4	https://chem.libretexts.org
5	https://www.askiitians.com/Physical Chemistry/Chemical Kinetics

HOLEN EMPONENTIENT	VIVEKANANI	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	B.Sc	Programme Code		UCH Regulations						2018-2019				
Department	Cl	nemistry				Semester				5				
Course Code	Cou	Periods per Week			Credit	Maximum Marks			larks					
			L	L T P		С	CA E		E Total					
18U5CHEO1	ELECTIVE C ANALYTICA	OURSE - I: L CHEMISTRY	5			5	25	7:	5	100				
Course Objectives	1. To help the critical think	1. To help the student to develop the habit of accurate manipulation and an attitude of critical thinking.												
	2. To learn the	basic analytical metho	ods ai	nd a	ppre	eciate what is	involved	in a	n an	alysis.				
	3. To develop the student knowledge to handle the chemicals in proper and hygiene manner.													
POs	PROGRAMME OUTCOME													
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.													
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.													
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.													
PO 4	Apply one's lea	urning to real life situa	ations	•										
PO 5	Analyse and sy	nthesise data from a v	variet	y of	sou	rces.								
PO 6	Establish hypot report the result	heses, predict cause-a ts of an experiment or	and-e inve	ffec stig	t rel atio	ationships; al n.	bility to p	lan, e	exec	cute and				
PO 7	Ability to work coordinated eff	effectively and respe- ort on the part of a gr	ectfull oup.	ly w	rith o	diverse teams	s; facilitat	e coo	oper	ative or				
PO 8	Ability to analy	vse, interpret and draw	v con	clus	ions	from quantit	ative/qua	litati	ve d	ata.				
PO 9	Critical sensibiand society.	lity to lived experience	ces, w	vith	self	awareness a	nd reflexi	vity	of b	oth self				
PO 10	Capability to u evaluate, and us	se ICT in a variety o se a variety of relevar	f lear nt info	ning orma	g sit atior	uations, dem 1 source.	onstrate a	ıbility	y to	access,				
PO 11	Ability to work	independently, identi	ify ap	pro	pria	te resources r	equired fo	or a p	oroje	ect.				
PO 12	Possess knowl perspective.	edge of the values	and	bel	liefs	of multiple	e cultures	s an	d a	global				
PO 13	Appreciating en and truthful act	nvironmental and sus	tainal work.	oilit	y iss	sues; and add	pting obj	ectiv	re, u	nbiased				
PO 14	Building a tea members.	m who can help ac	hieve	th	e vi	ision, motiva	ting and	insp	oirin	ig team				
PO 15	Ability to acqui	ire knowledge and ski	lls.											

COs	COURSE OUTCOME
CO 1	Students will utilize the learned analytical skills in handling various chemical and biochemical instruments.
CO 2	Students will be able to learn basic understanding on precipitation and gravimetric techniques.
CO 3	Students will have basic understanding on purification and separation techniques.
CO 4	Students will be able to interpret the results of quantitative experiments and interpret the data in meaningful way.
CO 5	Students will have a thorough understanding of thermal and electro analytical techniques.
Pre-requisites	

					KN	OWLI	EDGE	LEVE	ELS							
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing																
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)																
	(3	5/2/1 ir	Idicate	es the st	rengt	n or co	rrelati	ion, 3-9	strong	, 2-mec	num, I	-weak)			
Co	S]	KLs				POs	8			KI	LS		
	1								PO	1			3			
	1				2				PO	2			5			
									PO	3			3			
CO	2								PO	4			1			
	2				1				PO	5			2	,		
									PO	6			4			
CO	3			4					PO	/		6				
	C								PO	0		2				
									PO 1	9		5				
СО	4			3				PO 10					<u> </u>			
				5					PO 1	2		4				
									PO 1	3						
CO	5				5			PO 14					2			
					-			PO 15				3				
						CO/I	PO Ma	pping								
	(3	8/2/1 ir	ndicate	es the st	trengtl	h of co	rrelati	ion, 3-:	strong	, 2-meo	lium, 1	-weak))			
60						Pro	gram	me Ou	tcome	(POs)						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	2	1	2	2	3	1	1	3	2	1	1	1	2	3	2	
CO2	1	1	1	3	2	1	1	2	1	1	1	1	1	2	1	
CO3	2	2	2	1	1	3	1	1	2	2	3	3	2	1	2	
CO4	3	1	3	1	2	2	1	2	3	1	2	2	3	2	3	
CO5	1	3	1	1	1	2	2	1	1	3	2	2	1	1	1	

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

Content of the Syllabus										
	Laboratory Hygiene and safety	Periods	12							
Unit - I	Storage and handling of corrosive, flammable, explosive poisonous chemicals. Simple first aid procedures for accide bromine, burns and cut by glass. Threshold vapour concen- disposal. Heating methods, stirring methods, filtration pipette, standard measuring flask and burette. Weighing pr and single pan balance.	e, toxic, carci ents involving a atration - safe l techniques. Ca inciple in chen	nogenic and acids, alkalis, imits. Waste alibration of nical balance							
	Gravimetric Analysis	Periods	12							
Unit - II	Principle-theories of precipitation-solubility product and pr Solubility product- precipitation errors- Co-precipitation Reduction of errors. Precipitation from homogeneous solut precipitate. Calculation in gravimetric analysis - use of gr precipitant-specific and selective precipitant- Anthranilit ethylenediamine, 8- hydroxyquinoline, salicylaldoxime, use agent. Crucibles-types, care and uses.	ecipitation-fact on and post-j ion, washing a avimetric facto ic acid, cupfe of masking an	ors affecting precipitation, nd drying of or. Choice of eron, DMG, d demasking							
	Purification Techniques	Periods	12							
Unit - III	Dessicant: Types of dessicant: Relative efficiencies of dessicant, Drying power and temperature, Regeneration of dessicant, choice of dessicants - Technique of drying: Drying of solids. Purification of solid organic compounds - Recrystallisation, Extraction, sublimation, use of miscible solvents, use of drying agents and their properties. Purification of liquids- Distillation: Theory of distillations; Technique; Fractional distillation, Steam distillation, azeotropic and vaccum distillation.									
	Chromatographic Techniques	Periods	12							
Unit - IV	Introduction - Adsorption Chromatography-Partition Chromatography - principle, types of adsorbents, preparat recovery of substances and applications. TLC –Principle solvent, preparation of chromatoplates, R_f - value, facto Significance of R_f value. Paper chromatography - prince electrophoresis - separation of amino acids. Gas Chromatography liquid chromatography (HPLC). High pressure liquid principle - instrumentation and advantages.	Chromatograph ion of the colu , Choice of ac rs affecting th ciple, solvents atography (GC / (GC) and H chromatograph	hy. Column imn, elution, dsorbent and le R_f values. used, paper)-principle - igh pressure hy (HPLC)-							
Unit - V	Thermal and electroanalytical techniques	Periods	12							

and disadvantages- migration, residual, limiting and diffusion current supporting electrolytes- Ilkovic equation (derivation not required) and current voltage curve- oxygen wave. Half wave potential $(E_{1/2})$ - Polarog analytical tool in quantitative and qualitative analysis	nts- Use of significance- graphy as an
principle, concentration polarization, dropping mercury electrode (DME) and disadvantages- migration, residual, limiting and diffusion current supporting electrolytes- Ilkovic equation (derivation not required) and	- advantages nts- Use of significance-
principle - Thermogravimetric analysis and Differential Thermal Analysis of various components with block diagram- TGA & DTA curves of CuSO $CaC_2O_4.H_2O$ in air and in CO_2 - factors affecting TGA & DTA curves. P	- discussion $O_4.5H_2O$ and olarography-

Text l	Books
1	D.A. Skoog, D.M. West and F.J. Holler, Analytical Chemistry: An Introduction, 5th edition, Saunders college publishing, Philadelphia, 1990.
2	U.N. Dash, Analytical Chemistry: Theory and Practice, Sultan Chand and sons Educational Publishers, New Delhi, 1995.
3	R.A. Day Jr. A.L. Underwood, Quantitatives Analysis, 5th edition, Prentice Hall of India Private Ltd., New Delhi, 1988
4	R. Gopalan, Analytical Chemistry, S. Chand and Co., New Delhi
Refer	ences
1	Elementary Organic Spectroscopy: Principles and Chemical Applications, S.Chand and company Ltd., Ram Nagar, New Delhi, 1990
2	V.K. Srivastava, K.K. Srivastava, Introduction to Chromatography: Theory and Practice, S. Chand and company, New Delhi, 1987
3	R.M. Roberts, J.C. Gilbert, L.B. Rodewald, A.S. Wingrove, Modern Experimental Organic Chemistry, 4th edition, Holt Saunders international editions
4	A.K. Srivastava, P.C. Jain, Chemical Analysis: An Instrumental Approach for B.Sc. Hons. and M.Sc. Classes, S. Chand and company Ltd., Ram Nagar, New Delhi
E-Ref	rences
1	https://www.news-medical.net/life-sciences/Analytical-Chemistry-Techniques.aspx.
2	https://www.toppr.com/guides/chemistry/organic-chemistry/purification-of-organic-compounds
3	https://www.hitachihightech.com/global/products/science/tech/ana/thermal/descriptions/ta.html

HOURN ENDOWERINGH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.													
Programme	B.Sc	Programme Code		τ	JCI	H	Regulations		2018-2019					
Department		Chemistry				Semest	er			5				
Course Code	(Course Name	Pe per	rioc We	is æk	Credit	Max	imur	m Marks					
18U5CHSO1	SKILL BASED SPECTROSC	ELECTIVE COURSE – I OPY	L 2	Т	Р	2 2	25	ES. 75	E 5	Total 100				
Course Objectives	Students acquire the knowledge about the fundamentals and different types of spectroscopy. Students can able to interpret unknown compounds through UV, FT-IR, Raman, NMR, Mass spectroscopy. Students can able to identify the structure of unknown compounds and application of spectroscopy.													
POs	PROGRAMME OUTCOME													
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.													
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.													
PO 3	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.													
PO 4	Apply one's lea	arning to real life situations.												
PO 5	Analyse and sy	nthesise data from a variety	of sc	ourc	es.									
PO 6	Establish hypot report the result	heses, predict cause-and-eff ts of an experiment or inves	fect r tigati	elat on.	ion	ships; al	bility to p	lan, e	exec	ute and				
PO 7	Ability to work coordinated eff	effectively and respectfully ort on the part of a group.	v witl	n di	ver	se teams	; facilitat	e coo	opera	ative or				
PO 8	Ability to analy	vse, interpret and draw concl	usio	ns fi	rom	n quantit	ative/qual	itativ	ve da	ata.				
PO 9	Critical sensibiand society.	lity to lived experiences, wi	th se	lf a	waı	eness a	nd reflexi	vity o	of b	oth self				
PO 10	Capability to u evaluate, and u	se ICT in a variety of learn se a variety of relevant infor	ing s mati	situa on s	atio soui	ns, dem ce.	onstrate a	bility	y to	access,				
PO 11	Ability to work	independently, identify app	ropri	iate	res	ources r	equired fo	or a p	roje	ect.				
PO 12	Possess knowl perspective.	edge of the values and	belie	fs	of	multiple	e cultures	s and	d a	global				
PO 13	Appreciating en and truthful act	nvironmental and sustainabilities in all aspects of work.	ility i	ssu	es;	and add	pting obj	ectiv	e, u	nbiased				
PO 14	Building a tea members.	m who can help achieve	the	visi	ion,	motiva	ting and	insp	oirin	g team				
PO 15	Ability to acqui	ire knowledge and skills.												

COs	COURSE OUTCOME
CO 1	Student will be able to understand the principle, instrumentation and applications of
	Rotational Spectroscopy.
CO 2	Students will be skilled in UV spectroscopy and it's applications.
	Students can able to learn theory, laws, and types of band and applications of IR
CO 3	Spectroscopy. Knowledge of students will be developed in the field of Raman
	spectroscopy by the learning of Scattering, stokes and anti-stokes line etc.
CO 4	Students can able to understand the concept of NMR spectrum and its applications.
CO 5	Students will be skilled in different types of peak, Nitrogen rule and fragmentation of
0.5	Mass spectroscopy.
Pre-requisites	

					KN	OWLI	EDGE	LEVE	ELS						
1.R	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos KLs POs KLs															
									PO	1			3		
CO	1				2				PO	2			2	,	
									PO	3			4		
									PO	4			5		
CO	2			1					PO	5			1		
									PO	6			4		
60	2								PO	7		3			
	3			3					PO	8		5			
									PO	9		2			
CO	4			4					PO 1	.0			3		
	+								PO I	1		5			
									PO I	2			4		
СО	5				2			PO 13					3		
					3				PO 1	5		5 1 4 3 5 2 3 5 4 3 2 5 4 3 2 5 -weak) PO12 PO13 PO14 PC			
							PO Ma	nning	101	5					
	(3	8/2/1 ir	ndicate	es the st	trengtl	h of co	rrelati	on, 3-	strong	, 2-meo	lium, 1	-weak)		
					0	Pro	gram	ne Ou	tcome	(POs)	,		·		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	3	1	1	2	1	2	1	3	2	1	1	2	3	1
CO2	1	2	1	1	3	1	1	1	2	1	1	1	1	2	1
CO3	3	2	2	1	1	2	1	1	2	3	1	2	3	2	1
CO4	2	1	3	2	1	3	2	2	1	2	2	3	2	1	2
CO5	3	2	2	1	1	2	1	1	2	3	1	2	3	2	1
Course Assessment Methods															
---	--	--	--	--	--	--									
Direct															
1. Continuous Assessment Test I, II & Model															
2. Assignment															
3. End Semester Examinations															
Indirect															
1. Course End Delivery															

Content of the Syllabus									
	Rotational Spectroscopy	Periods	6						
Unit - I	Fundamental concepts electromagnetic spectrum - Region radiation with matter. Rotational Spectroscopy - Principl rules for rotational spectroscopy - Molecular rotation-diaton diatomic molecule as non-rigid rotor. Applications of rot isotopic substitution.	of spectrum, I le-Instrumentati mic molecule a ation spectra:	nteraction of ion-Selection s rigid rotor- bond length-						
	UV-VIS spectroscopy	Periods	6						
Unit - II	Theory-Instrumentation-Beer-Lamberts Law - bands in U electronic transitions - types of electronic transitions be characteristic absorption (λmax and εmax) of carbon conjugated double bond systems and aryl groups - factors Spectroscopic terms: Chromophore, Auxochrome, Bathoch shift, Hypochromic shift and Hyperchromic shift.	V-VIS spectrum based on select yl, isolated d influencing the promic shift, H	m - possible tion rules - ouble bond, e absorption. ypsochromic						
	IR & Raman Spectroscopy	Periods	6						
Unit - III	Theory-Instrumentation- Hooke's Law - bands in IR spectypes of fundamental vibrations-Modes of vibrations a affecting the frequency of absorption-Conjugation, indubonding. Applications of IR -Identification of Functional and Raman scattering - Stokes and anti-stokes lines in frequency - condition for a molecule to be Raman active - IR spectra. Applications of Raman spectroscopy.	ctrum - Units- and their ener ctive effect an groups. Rayleig Raman spect Comparison of	Number and gies- Factor nd hydrogen gh scattering ra - Raman f Raman and						
	NMR spectroscopy	Periods	6						
Unit - IV	Unit - IVNuclear spin and conditions for a molecule to give rise to NMR spectrum- Theory o NMR spectra-Instrumentation- chemical shift, Number of NMR signals - shielding, de shielding, Factors influencing chemical shift. TMS & its applications, peak area and number of protons -splitting of signals-spin-spin coupling.								
	Mass spectroscopy	Periods	6						
Unit - V	Unit - VBasic Principles - Instrumentation - Molecular ion peak, metastable peak, base peak and isotopic peak - their uses- Nitrogen rule-Ring rule-Fragmentation of alkanes, alkenes, cycloalkane and alcohol - McLafferty rearrangement- Applications of Mass spectroscopy.								
	Total Periods		30						

Text	Books
1	C. Anand, Instrumental methods of chemical analysis, Himalaya Publishing, 1980.
2	Y.R.Sharma, Elementary Organic Absorption Spectroscopy-principles and chemical applications, S.Chand and Co., 2006.
3	K.V. Raman, R. Gopalan and P.S. Ragavan, Molecular spectroscopy, K.V. Raman, R. Gopalan and P.S. Ragavan Thomson Publications, 2004.
Refer	ences
1	C.N. Banwell, Mc Cash and M. Elaine, Fundamentals of Molecular Spectroscopy, Tata Mc.Graw Hill Publishing, New Delhi, 1994.
2	J. Mohan, Organic Analytical Chemistry, Narosa Publishers, 2003.
3	W. Kemp, Organic Spectroscopy, 3rd Edition, Palgrave publishers, 2007.
4	R.M.Silverstein, F.X.Webster, D.J. Kiemle, D.L. Bryce, Spectrometric Identification of Organic compounds, 8th Edition, 2015.
5	G. Aruldhas, Molecular Structure and Spectroscopy, PHI Learning Pvt. Ltd., 2004.
E-Ref	ferences
1	https://nptel.ac.in/courses/122101001/downloads/lec-13.pdf
2	https://en.wikipedia.org/wiki/Rotational_spectroscopy
3	https://nptel.ac.in/courses/102103044/pdf/mod2.pdf
4	www.mssl.ucl.ac.uk/~gbr/workshop3/papers/Paerels_school_Mar17.pdf

HOLEN ENPONENTIAL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	B.Sc	Programme Code	UCH Regulations 2018-201										
Department	С	hemistry	Semester 6										
Course Code	Co	urse Name	Pe per	erioo We	ls æk	Credit	Мах	timu	m N	Aarks			
			L	Т	Р	С	CA	ES	E	Total			
18U6CHCO8	CORE PAPE ORGANIC C	R-VIII: HEMISTRY-II	5			5	25	7:	5	100			
Course	1. To gain know	wledge about fats, oils	s and	wax	es.								
Objectives	 To understand Acquire the 	nd the properties and s knowledge about stere	struction of the structure of the struct	ure o amii	of al 10 a	kaloids and t cids, proteins	erpenoids and carb	ohyd	lrat	es.			
POs		PROGRAMME OUTCOME											
PO 1	Capable of der disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.											
PO 2	Demonstrate t complex inform	he ability to listen c nation in a clear and c	arefu oncis	lly, e m	reac anne	l and write er to differen	analytica t groups.	lly, a	and	present			
PO 3	Capability to evidence, arguing	apply analytic though ments, claims, beliefs	nt to on th	a b e ba	ody sis o	of knowled of empirical of	ge; analy evidence.	se a	nd	evaluate			
PO 4	Apply one's le	arning to real life situa	ations	•									
PO 5	Analyse and sy	onthesise data from a v	variet	y of	sou	rces.							
PO 6	Establish hypo report the resul	theses, predict cause-atts of an experiment of	and-e r inve	ffec stig	t rel atioi	ationships; a 1.	bility to p	lan, (exe	cute and			
PO 7	Ability to worl coordinated eff	c effectively and respectively and respe	ectful oup.	ly w	ith o	diverse teams	s; facilitat	e co	ope	rative or			
PO 8	Ability to analy	yse, interpret and drav	v con	clus	ions	from quantit	ative/qua	litati	ve	data.			
PO 9	Critical sensibiand society.	ility to lived experience	ces, w	vith	self	awareness a	nd reflexi	vity	of	both self			
PO 10	Capability to u evaluate, and u	use ICT in a variety on se a variety of relevant	f lear nt info	ning orma	g sit atior	uations, dem	onstrate a	bilit	y to	o access,			
PO 11	Ability to work	k independently, ident	ify ap	pro	oriat	e resources 1	equired for	or a p	oroi	ect.			
PO 12	Possess know perspective.	ledge of the values	and	bel	iefs	of multiple	e cultures	s an	d a	a global			
PO 13	Appreciating e and truthful ac	nvironmental and sus	tainal work.	oilit	y iss	sues; and add	opting obj	ectiv	ve, 1	unbiased			
PO 14	Building a tea members.	am who can help ac	chieve	th	e vi	sion, motiva	ating and	insp	oiri	ng team			
PO 15	Ability to acquire knowledge and skills.												

COs	COURSE OUTCOME
CO 1	To gain an insight into fats, oils, wax and detergents.
CO 2	To gain knowledge about the properties and structure of organic compounds like terpenoids, alkaloids derived from plant materials.
CO 3	To understand the structure of some steroidal hormones and vitamins.
CO 4	To gain an insight into amino acids and its preparation, proteins structure and nucleic acids.
CO 5	To acquire basic knowledge of monosaccharides and disaccharides.
Pre-requisites	

KNOWLEDGE LEVELS															
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing															
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation 3-strong 2-medium 1-weak)															
	Cos KLs POs KLs														
Cos	8				KLS				POS	3			KL	.S	
CO	1				2					ן ר			3		
	•				2				PO 2	2			4		
									PO .	1			0		
СО	2				3				PO 4	+			3		
					5				PO	5			2		
									PO	7			4		
CO	3				1			PO 8				5			
								PO 9				3			
						PO 10							1		
CO	4			4				PO 11				4			
									PO 1	2			2		
	_								PO 1	3			6		
CO	5			5					PO 1	4		2			
								PO 15					4		
				_		CO/1	PO Ma	pping							
	1	(3/2/)	1 indica	ates the	streng	th of co	orrelati	on, 3-s	trong, 2	2-mediu	ım, 1-w	eak)			
COs		1	1		1	Pr	ogram	me Ou	tcome	(POs)		1	1	1	r
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	2	2	3	1	1	2	2	1	3	1	3	1
CO2	3	2	1	1	3	2	2	1	3	1	2	2	1	2	2
CO3	1	1	1	1 3 1 2 1 1 3 1 2								2	1	2	1
CO4	2	3	1	1	2	1	1	2	2	1	3	1	1	1	3
CO5	1	2	2	1	1	1	2	3	1	1	2	1	2	1	2

Course Assessment Methods Direct 1. Continuous Assessment Test I, II & Model 2. Assignment 3. End Semester Examinations Indirect 1. Course End Delivery

Content of the Syllabus										
Fats, Oils and Wax		Periods	12							
Unit - IOccurrence, properties - hydrogenation - drying of oils - hydrogenolysis - analysis of oils and fats: saponification value and iodine number - synthetic of cationic, anionic and non-ionic detergents - occurrence of wax - difference be and lipids - compound lipids: phospholipids, Sphingolipids and glycolipids.										
Terpenoids and All	caloids	Periods	12							
Unit - II Harding Construction Unit - II Terpenoids and alka structure of alkaloid isolation - isoprene Alkaloids: Definition determination of construction	Terpenoids and alkaloids- Occurrence - Terpenes: General methods of determination of structure of alkaloids are added. Definition - general properties- classification and isolation - isoprene rule - structural elucidation of citral, geraniol and menthol. Alkaloids: Definition - general properties - classification - isolation - structure determination of conine, piperine, nicotine.									
Steroids, Hormones	s and Vitamins	Periods	12							
Unit - III Steroids: Definition- Androsterones, Test Water and Fat solul riboflavin, pyridoxi ascorbic acid.	Cholesterol and Ergosterol (structure or rosterone, Progestrone and Oestrone (so ble vitamins - Occurrence and biologic ne and ascorbic acid – structural eluc	only) - Steroid structure only) al importance eidation of pyr	al harmones: - Vitamins: of thiamine, ridoxine and							
Amino acids, prote	ins and nucleic acids	Periods	12							
Unit - IVAmino acids: - class α-amino acids- zwitt method, Sheehan me group analysis - Nuc	sification - essential and non essential a ter ion, isoelectric point - Peptides- synt ethod – Proteins - primary and secondary leic acids: Types of nucleic acids and co	mino acids - p hesis of peptid y structure of p postituents.	reparation of e: Bergmann roteins - End							
Carbohydrates		Periods	12							
Unit - VClassification - Monosaccharide: Constitution of glucose and fructose - Reactions of glucose and fructose - Mutarotation and its mechanism - Cyclic structure - pyranos and furanose forms - Fischer and Haworth projection of glucose and fructose Disaccharides: Structure and reactions of maltose and sucrose (Structural elucidation not necessary).										
	Total Periods		60							

Text	Books
1	I.L.Finar Organic chemistry vol I & II- ELBS, Pearson Education Ltd., 2008
2	O.P. Agarwal- Reactions and Reagents- Krishna prakashan media (p) Ltd., 1975
3	B.S.Bhal and Arun Bhal- A text book of organic chemistry, S. Chand & company Ltd, 1948.
Refer	ences
1	K.S. Tewari, and N.K. Vishoni, Organic Chemistry, Vikas Publishing House.l I & II- ELBS, Pearson Education Ltd., 2008
2	P.L.Soni and H.M.Chawla. Text book of organic chemistry, 26th revised edition, Sultan chand and sons, 1995
3	R.T. Morrison and Boyd, Organic Chemistry, VIth edition., PHI Learning Pvt Ltd., 2008.
4	Modern Organic Chemistry, M. K. Jain and S. C. Sharma, Vishal Publishing Co. 2018
5	Organic Chemistry, Bhupinder Mehta and Manju Mehta, PHI learning Publishers.
E-Ref	ferences
1	https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Map%3A_Organic_Chemistry_(McMurry)/ 27%3A_Biomolecules Lipids/27.03%3A_Waxes%2C_Fats%2C_and_Oils.
2	https://www.britannica.com/science/alkaloid
3	https://chem.libretexts.org/Bookshelves/Biological_Chemistry/Supplemental_Modules_(Biological_Chemistry)/Lipids/Steroids
4	https://www.thoughtco.com/amino-acid-373556
5	https://microbenotes.com/carbohydrates-structure-properties-classification-and-functions

HOLEN ENPONENTIAL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.												
Programme	B.Sc	Programme Code	UCH Regulations 2018-201										
Department	С	hemistry	Semester 6										
Course Code	Co	urse Name	Pe per	erioo We	ls æk	Credit	Max	timur	n N	Aarks			
			L	Т	Р	С	CA	ES	Е	Total			
18U6CHCO9	CORE PAPE INORGANIC	R-IX: CHEMISTRY-II	5			5	25	75	5	100			
Course	1. To study the	structure of some cry	stals.										
Objectives	 To gain know Acquire the 	wledge of some impor knowledge about coor	rtant e rdinat	elect ion	ron chei	deficient con nistry and or	npounds. gano-met	allic	coi	mpounds.			
POs		PROG	RAM	IMF	E OI	UTCOME							
PO 1	Capable of der disciplines.	nonstrating comprehe	nsive	kno	wle	dge and und	erstanding	g of c	one	or more			
PO 2	Demonstrate t complex inform	he ability to listen c nation in a clear and c	arefu concis	lly, e m	reac anne	1 and write er to differen	analytical t groups.	lly, a	ınd	present			
PO 3	Capability to evidence, arguing	apply analytic though ments, claims, beliefs	ht to on th	a b e ba	ody sis o	of knowled of empirical of	ge; analy evidence.	se ar	nd	evaluate			
PO 4	Apply one's le	arning to real life situ	ations										
PO 5	Analyse and sy	onthesise data from a v	variet	y of	sou	rces.							
PO 6	Establish hypo report the resul	theses, predict cause- its of an experiment of	and-e r inve	ffec stig	t rel ation	ationships; a 1.	bility to p	lan, e	exe	cute and			
PO 7	Ability to work coordinated eff	c effectively and respectively and respe	ectful oup.	ly w	ith o	diverse teams	s; facilitat	e coo	ope	rative or			
PO 8	Ability to analy	yse, interpret and drav	v con	clusi	ions	from quantit	ative/qua	litativ	ve o	lata.			
PO 9	Critical sensibiand society.	ility to lived experient	ces, v	vith	self	awareness a	nd reflexi	vity	of I	both self			
PO 10	Capability to u evaluate, and u	use ICT in a variety of se a variety of relevant	of lear nt info	ning orma	g sit atior	uations, dem	onstrate a	ıbility	y to	access,			
PO 11	Ability to work	k independently, ident	ify ap	pro	oriat	te resources 1	equired for	or a p	oroj	ject.			
PO 12	Possess know perspective.	ledge of the values	and	bel	iefs	of multiple	e cultures	s and	d a	a global			
PO 13	Appreciating e and truthful ac	nvironmental and sus tions in all aspects of	taina work.	oilit	y iss	sues; and add	pting obj	ectiv	e, 1	unbiased			
PO 14	Building a tea members.	am who can help ac	chieve	th	e vi	sion, motiva	ating and	insp	oiri	ng team			
PO 15	Ability to acquire knowledge and skills.												

COs	COURSE OUTCOME									
CO 1	Students gain knowledge about the geometry of crystals and its significance									
CO 2	Students capable to recognize the inter halogens and pseudo halogens.									
CO 3	Students improved their understanding towards preparation of some electron deficient compounds.									
CO 4	Students become skilled at the importance of coordination chemistry.									
CO 5	Students can identify and understanding the structures of some organo-metallic compounds									
Pre-requisites										

					KN	NOWL	EDGE	LEVE	LS						
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing															
CO / PO / KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)															
Cos	3			ites the	KLs			011, 0 5	POs	3	,	cuix)	KL	.S	
									PO	1			1		
CO	1				1				PO	2			3		
									PO	3			2		
	2								PO	4			4		
	2				2				PO :	5			6		
									PO	6			2		
СО	3				2			PO 7				4			
				2				PO 9				4			
									PO 1	.0			5		
CO	4		3					PO 11				3			
									PO 1	2			2		
	-								PO 1	.3		1			
СО	5			4					PO 14				4		
						<u> </u>		<u> </u>	PO 1	5			5		
		(3/)	1 india	atos tha	strong	CO/I th of co	PO Ma rroloti	pping	trong	2 modiu	um 1 u	voolz)			
		(3121)		ates the	sueng	D.		011, 3-5	taama	(\mathbf{DO}_{a})	1111, 1-w	(Cak)			
COs	DO1	DOJ	DO2	DO4	DOS						DO11	DO12	DO12	DO14	DO15
CO1	POI	PO2	P03	P04	P05	PU0	PO/	1	P09	1	POIT	P012	P013	P014	1
	3	1	2	1		2						2	3		1
	2	2	3	1	1	3	1	2	1	1	2	3	2	1	1
CO3	2	2	3	1	1	3	1	2	1	1	2	3	2	1	1
CO4	1	3	2	2	1	2	2	3	2	1	3	2	1	2	1
CO5	1	2	1	3	1	1	1	2	3	2	2	1	1	3	2

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

Content of the Syllabus										
	Solid State Chemistry	Periods	12							
	Crystalline and Amorphous solids - Differences - Symmetr	y in crystals -	Basic crystal							
	systems - Space lattice and unit cell - Bravais lattices-CCP, FCP, BCP, Packing									
Unit - I	efficiency - Miller indices - Types of crystals - Radius rational	o rule and its a	applications -							
	Structure of Sodium Chloride, Cesium Chloride, Zinc blend	de and Wurtzit	e. Defects in							
	ionic crystals: Schottky, Frenkel, Metal excess and metal def	iciency defects	5.							
	Inter Halogens and Pseudohalogens	Periods	12							
	Definition - similarities and dissimilarities between halo	gen and pseu	dohalogen -							
Unit - II	preparation, properties, structure and uses of cyanogen and	thiocyanogen	- Naming of							
	the interhalogens - types, preparation, properties, structure and uses of ICl, BrF_3 , IF_5 ,									
	and IF ₇ . Basic properties of iodine.									
	Electron Deficient Compounds	Periods	12							
	Definition - Borides: structure, properties and uses - Boranes: Diborane - preparation,									
Unit - III	properties and uses - bonding in boranes - B_2H_6 , B_4H_{10} - Carboranes - Wade's rule -									
	compounds of boron with nitrogen: preparation, proper	ties and uses	- Borazine-							
	preparation, properties and uses.									
	Coordination Chemistry-III	Periods	12							
	Stability of complexes - Thermodynamic and kinetic stab	ility - stepwise	e and overall							
T T 1 / T T	stability constant - Factors affecting the stability of complexes. Ligand substitution									
Umt - IV	reactions in square planar complexes: The trans effect - Trans effect series - uses of									
	trans effect - theories of trans effect - electrostatic polari	zation theory	π - bonding							
	theory - mechanism of substitution reactions - factors affecti	ng the rates of	substitution							
	Organametallia Compounda	Dorioda	12							
	Organometallia compounds: Definition Classification has	ed on natura o	12 f C M bond:							
	α lonic α bonded and non classically bonded Organometal	lic compounds	of Lithium							
Unit - V	Magnesium and Boron - preparation properties structure at	ne compounds ad uses. Olefin	complexes _							
	Zeise's salt - synthesis and structure Cyclonentadieny.	la uses. Olerni	- Ferrocene-							
	preparation properties bonding and uses	i complexes	i cirocene-							
	Total Periods		60							

Text l	Books								
1	Puri, Sharma, Kalia, Principles of Inorganic Chemistry 32nd Edition (2014), Milestone Publishers and Distributor, New Delhi.								
2	W.U. Malik, G. D. Tuli, R. D. Madan, Selected topics in Inorganic Chemistry, S.Chand & company, New Delhi.								
3	R.D. Madan, Satyaprakash's Modern Inorganic Chemistry, S. Chand Publishing, New Delhi.								
Refer	ences								
1	S. Prakash, G.D. Tuli, S.K. Basu and R.D. Madan, Advanced Inorganic Chemistry - Vol – I (2006), S. Chand Publishing, New Delhi.								
2	S. Prakash, G.D. Tuli, S.K. Basu and R.D. Madan, Advanced Inorganic Chemistry-Vol – II (2006), S. Chand Publishing, New Delhi.								
E-Ref	Terences and the second s								
1	https://chem.libretexts.org/								
2	https://www.toppr.com/guides/chemistry/the-p-block-elements/interhalogen- compounds/								
3	http://chem.yonsei.ac.kr/chem/upload/CHE3103-01/119484463779670.pdf								

HOREN ENFONCEMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.										
Programme	B.Sc Programme Code UCH Regulations 2018-2019										
Department	Chemistry Semester 6										
Course Code	Сог	irse Name	Pe per	erioo We	is eek	Credit	Maximum Marks				
			L	Т	Р	С	CA	ESE	E Total		
18U6CHC10	CORE PAPEI PHYSICAL C	R-X: HEMISTRY-II	5			5	25	75	100		
Course Objectives	 To encoura To acquire To under photochemist 	 To encourage the students to study about the different phases of compounds. To acquire the knowledge on the fundamental concepts of electrochemistry. To understand the principle of radiative and non-radiative transitions in photochemistry. 									
POs		PROG	RAN	M	E OI	UTCOME					
PO 1	Capable of den disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines									
PO 2	Demonstrate the complex inform	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.									
PO 3	Capability to a evidence, argui	apply analytic though nents, claims, beliefs	nt to on th	a b e ba	ody isis (of knowled of empirical of	ge; analyse evidence.	e an	d evaluate		
PO 4	Apply one's lea	arning to real life situa	ations								
PO 5	Analyse and sy	nthesise data from a v	variet	y of	sou	rces.					
PO 6	Establish hypot report the resul	heses, predict cause- ts of an experiment or	and-e r inve	ffec stig	t rel atio	ationships; a n.	bility to pla	an, ez	xecute and		
PO 7	Ability to work coordinated eff	effectively and respe ort on the part of a gr	ectful oup.	ly w	vith	diverse teams	s; facilitate	cooj	perative or		
PO 8	Ability to analy	vse, interpret and drav	v con	clus	ions	from quantit	ative/quali	tativ	e data.		
PO 9	Critical sensibi	lity to lived experience	ces, v	vith	self	awareness a	nd reflexiv	ity o	f both self		
PO 10	and society. Capability to u evaluate, and u	se ICT in a variety o se a variety of relevar	f lear	ning orma	g sit atior	uations, dem	onstrate at	oility	to access,		
PO 11	Ability to work	independently, ident	ify ar	pro	pria	te resources r	equired for	r a pi	oject.		
PO 12	Possess knowl perspective.	edge of the values	and	bel	liefs	of multiple	e cultures	and	a global		
PO 13	Appreciating en and truthful act	nvironmental and sus	taina work.	oilit	y iss	sues; and add	pting obje	ctive	e, unbiased		
PO 14	Building a tea members.	m who can help ac	chieve	th	e vi	ision, motiva	ating and	inspi	ring team		
PO 15	Ability to acquire knowledge and skills.										

COs	COURSE OUTCOME
CO 1	Students will identify the formation of metal alloy systems.
CO 2	Students can demonstrate the processes in electrochemistry and method of determinations in conductometric titrations.
CO 3	Students understand the formation and dissociation of acids, bases and salts.
CO 4	Students learn about the various types of cells and electrodes.
CO 5	Students analyze and apply the different laws of photochemical reactions.
Pre-requisites	

	KNOWLEDGE LEVELS														
	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing														
	CO / PO / KL Mapping														
Cos KLs POs KLs															
	,				KLS				PO	, 1			2		
СО	1				2				PO	2			4		
									PO	3			1		
									PO 4	4			3		
CO	2				1				PO :	5			5		
			_						PO	6			2	, ,	
CO	3			4				PO 7				4			
	5							PO 8				5			
								PO 10				1			
СО	4			5				PO 11				2			
								PO 12				4			
								PO 13				3			
CO	5		3					PO 14				5			
								PO 15				4			
						CO/1	PO Ma	pping		• •		• `			
		(3/2/	I indica	ates the	streng	th of co	rrelati	on, 3-s	trong, .	2-medit	ım, 1-w	еак)			
COs	DO1	DO2	DO2	DO 4	D05	Pr	ogram	me Ou	tcome	(POs)	DO11	DO12	DO12	DO14	DO15
	POI	PO2	PO3	PO4	P05	PO6	PO/	P08	P09	POIO	POIT	PO12	P013	PO14	POIS
COI	3	1	2	2	1	3	1	1	2	2	3	1	2	1	1
CO2	2	1	3	1	1	2	1	1	1	3	2	1	1	1	1
CO3	1	3	1	2	2	1	1	2	2	1	1	3	2	2	3
CO4	1	2	1	1	3	1	2	3	1	1	1	2	1	3	2
CO5	2	2	1	3	1	2	2	1	3	1	2	2	3	1	2

Course Assessment Methods							
Direct							
1. Continuou 2. Assignme 3. End Seme	us Assessment Test I, II & Model ent ester Examinations						
Indirect							
1. Course Er	nd Delivery						
	Content of the Syllabus						
	Phase Rule Periods	12					
Unit - I	Statement, explanation of terms involved in phase rule, derivation of pha component system – water, sulphur and CO ₂ systems - two component sy liquid equilibria - CST Lower and upper systems - simple eutectic system KI-H ₂ O systems. Compound formation with congruent melting points - F Zn-Mg and compound formation with incongruent melting points - K-Na all	ase rule. One stem - solid - - Ag- Pb and eCl ₃ -H ₂ O and oy system.					
	Electrochemistry – I Periods	12					
Unit - II	Faraday's laws, Ohm's law, Electrolytic conductance - specific co equivalent conductance - molar conductance - variation of molar cond equivalent conductance with dilution. Transport number - Determination number by Hittorf's method and moving boundary method. Ionic mobilitie and determination – Walden's rule. Kohlrausch's law - applications. Con titrations - Principle, types - strong acid vs strong base, weak acid vs Advantages of conductometric titrations.	nductance - luctance and of transport s - definition nductometric strong base.					
	Electrochemistry – II Periods	12					
Unit - III	Debye - Huckel Theory - Ionic atmosphere - dissociation of weak acids Ionic product of water - common ion effect and its applications. determination - Hydrolysis of different types of salts - determination of hydrolysis - electrical conductance method (Bredig's method). Buffer solu Buffer solution - Henderson - Hasselbalch equation. Solubility product between solubility product and molar solubility - Applications of solubility	and bases - pH and its of degree of ation - pH of ct - relation product.					
	Electrochemistry – III Periods	12					
Unit - IV	Standard cell - single electrode potential - Types of electrode - Standard electrode and calomel electrode - Quinhydrone electrode and glass electromeasurements (Poggendorff's method) - Standard emf - emf series - Electrochemical cells - Galvanic cell. Cell reaction and half cell rear representation. Reversible and Irreversible cells. Concentration cell with transference. Polarization and overvoltage. Potentiometric titration - princip and redox titrations.	rd Hydrogen ode - EMF - applications. action - cell and without ole, acid-base					
	Photochemistry Periods	12					
Unit - V	Electromagnetic radiation - difference between thermal and photochemical Laws of photochemistry - Beer-Lambert's Law, Grothus - Draper law, S law. The Jablonski diagram depicting various photo physical processes occ excited state - Radiative (Fluorescence and Phosphorescence) and r (Internal Conversion and Inter system crossing) processes. Quantum yield determination - Spectroscopic method and Agnometric method - law of ph equivalence. Photochemical reactions - Kinetics of hydrogen - bromin decomposition of HI.	al processes. tark-Einstein curring in the non-radiative - Definition, notochemical the reaction -					
	Total Periods	60					

Text	Books									
1	A. Bahl, B.S. Bahl and G.D. Tuli, Essentials of Physical Chemistry, Revised multicolor edition, S. Chand publication Ltd, New Delhi, 2010.									
2	B.R. Puri , L.R.Sharma., M.S.Pathania., Principles of Physical Chemistry, (47th edition) Vishal Publishing Co., New Delhi, 2017.									
3	D.R. Crow, Principles and Applications of Electrochemistry, 4th Edition, CRC Taylor and Francis Group, 1994.									
4	K.K. Rohatgi-Mukherjee, Fundamentals of Photochemistry, Revised edition, New Age International Pvt. Ltd, New Delhi, 2003.									
Refer	rences									
1	G. Raj, Advanced Physical Chemistry, Krishna Prakashan Media Pvt. Ltd, 35th edition, 2009.									
2	P. Atkins and J. D. Paula, Physical Chemistry, 7th Edn, Oxford University Press, New York, 2002.									
3	M.S. Yadhav, Electrochemistry, Anmol Publications Pvt Ltd, Revised Edition, 2001.									
E-Re	ferences									
1	soft-matter.seas.harvard.edu/index.php									
2	https://latestcontents.com/chemistry									
3	https://hemantmore.org.in/science/chemistry									
4	https://www.edinst.com									
5	https://chem.libretexts.org/Jablonski_diagram									

HOLEN ENPOYEENTEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.											
Programme	B.Sc Programme Code UCH Regulations 2018-2019											
Department	Chemistry Semester (
Course Code	Сои	irse Name	Pe per	erioc We	ls æk	Credit	Max	imui	um Marks			
			L	Т	Р	С	CA	ES	E	Total		
18U6CHEO2	ELECTIVE C MEDICINAL	OURSE - II CHEMISTRY	4			3	25	75	5	100		
Course Objectives	 To help the their critical thi To learn the industry. To understar 	 To help the student to understand the basic concepts in medicinal chemistry and to develop their critical thinking. To learn the basics and applications of the chemical compounds as drugs in pharmaceutical industry. To understand the importance of the constituents of blood and cancer chemotherapy 										
POs		PROGRAMME OUTCOME										
PO 1	Capable of den disciplines.	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines										
PO 2	Demonstrate the complex inform	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.										
PO 3	Capability to a evidence, argur	apply analytic though nents, claims, beliefs	nt to on th	a b e ba	ody sis (of knowled of empirical e	ge; analy: evidence.	se ai	nd e	evaluate		
PO 4	Apply one's lea	rning to real life situa	ations									
PO 5	Analyse and sy	nthesise data from a v	variet	y of	sou	rces.						
PO 6	Establish hypot report the result	heses, predict cause-a ts of an experiment or	and-e inve	ffect stiga	t rel atio	ationships; al 1.	bility to p	lan, e	exec	cute and		
PO 7	Ability to work coordinated eff	effectively and respe ort on the part of a gr	ctfull	y w	ith (diverse teams	s; facilitat	e coo	oper	ative or		
PO 8	Ability to analy	se, interpret and draw	v con	clusi	ons	from quantit	ative/qual	itati	ve d	lata.		
PO 9	Critical sensibi	lity to lived experience	ces, w	vith	self	awareness a	nd reflexi	vity	of b	oth self		
	and society.											
PO 10	Capability to u evaluate, and us	se ICT in a variety o se a variety of relevar	f lear it info	ning orma	g sit tior	uations, dem 1 source.	onstrate a	bility	y to	access,		
PO 11	Ability to work	independently, identi	ify ap	prop	oria	te resources r	equired for	or a p	oroje	ect.		
PO 12	Possess knowl perspective.	edge of the values	and	bel	iefs	of multiple	e cultures	s an	d a	global		
PO 13	Appreciating enabled and truthful act	nvironmental and sus	tainal work.	oility	y iss	sues; and add	pting obj	ectiv	e, u	inbiased		
PO 14	Building a tea members.	m who can help ac	chieve	the	e vi	sion, motiva	ating and	insp	oirir	ng team		
PO 15	Ability to acquire knowledge and skills.											

COs	COURSE OUTCOME
CO 1	Students will learn the basic principles of chemistry involved in life sciences.
CO 2	Students will have basic understanding on cancer chemotherapy and haemetology.
CO 3	Students will be able to incorporate the causes of various diseases and proper usage of medicines.
CO 4	Students will be able to know the different types of drugs being used in drug industry.
CO 5	Students will be able to know the different types of drugs being used in drug industry.
Pre-requisites	

	KNOWLEDGE LEVELS														
1.R	1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing														
	CO / PO / KL Mapping (3/2/1 indicates the strength of correlation 3-strong 2-medium 1-weak)														
Cos KLs POs KLs															
									PO	1			2		
CO	1				2				PO	2			1		
									PO	3			4		
60	2								PO	4			3		
	2				1				PO :	5			5		
									PO	6			2		
СО	3			4					PO	/ 2		4			
	-							PO 9				0			
								PO 10				2			
CO	4			5				PO 11				3			
								PO 12				4			
								PO 13					5		
CO	5			3				PO 14				1			
								PO 15 3							
				_	_	CO/I	°O Ma	pping							
	(3	3/2/1 ir	ndicate	es the st	rengt	h of co	rrelati	on, 3-9	strong	, 2-meo	lium, 1	-weak)		
COs						Pro	gramı	ne Ou	tcome	(POs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	3	2	1	2	1	3	1	1	1	3	2	1	1	2	2
CO2	2	3	1	1	1	2	1	1	1	2	1	1	1	3	1
CO3	1	1	3	2	2	1	1	1	3	1	2	3	2	1	2
CO4	1	1	2	1	3	1	2	2	2	1	1	2	3	1	1
CO5	2	1	2	3	1	2	2	1	2	2	3	2	1	1	3

Course Assessment Methods								
Direct								
1. Continuous Assessment Test I, II & Model								
2. Assignment								
3. End Semester Examinations								
Indirect								
1. Course End Delivery								

Content of the Syllabus											
	Study of Drugs	Periods	12								
	Definition of the terms - Drug, Pharmacophore, Pharmacodynamics, Pharmacopoeia,										
Unit I	pharmacology, pharmacokinetics, Bacteria, Virus, Fungus, A	Actinomycetes,	Metabolites,								
Omt - I	Metabolism of drug, Antimetabolites, LD50, ED50. Classification of drugs, Assay of										
	drugs - Specific methods.										
	Antibiotics	Periods	12								
Unit - II	Antibiotics - definition - classification as broad and na	rrow spectrum	antibiotics.								
	Structure, properties, mode of action and uses of penicillin, chloramphenicol,										
	streptomycin, tetracycline, novobiocin and puromycin.		Γ								
	Sulphonamides	Periods	12								
Unit - III	Sulphonamides - preparation, properties and uses of sulphanilamides - mechanism and										
	action of sulpha drugs - preparation, properties and uses of sulphadiazine,										
	sulphapyridine, prontosil and sulphathiazole.		Γ								
	Blood and Haematological Agents	Periods	12								
	Blood - composition of blood - pH of blood -blood Serum - blood grouping and										
Unit - IV	matching - physiological function of plasma protein - role of blood as oxygen carrier										
	with haemoglobin- cytochrome. Blood pressure, hypertension, clotting of blood and										
	naemotological agents.	D · 1	12								
	Cancer Chemotherapy	Periods	12								
	Types of neoplasms - Sarcoma, Carcinoma, Carcinosarcoma, Teratoma, Leukemia and										
	Polycythemia. Causes of cancer through virus and chemicals. Treatment of cancer by										
Unit - V	surgery, radiation therapy and medical therapy. Cytotoxic a	nticancer drugs	s - alkylating								
	agents - Bis-chloroethylamines, Cyclophosphamide, Mechlo	orethamine, Eth	yleneimines,								
	Alkyl Sulfonates, Nitrosoureas - Miscellaneous alkylating	agents - Mode	of action of								
	Aikyiaung agents.		(0)								
	I otal Periods		60								

Text l	Books
1	S. Lakshmi, Pharmaceutical Chemistry, S.Chand & Sons, New Delhi,2004.
2	V.K. Ahluwalia and Madhu Chopra, Medicinal Chemistry, Ane Books, New Delhi, Reprint 2009.
Refer	ences
1	G. Patrick, Medicinal Chemistry, VIVA Books Private Ltd, New Delhi, 2002
2	R.R. Nadendla, Principles of Organic Medicinal Chemistry New Age International Private Ltd Publishers, New Delhi Reprint 2007.
3	P. Parimoo, A Text Book of Medicinal Chemistry, CBS Publishers, New Delhi,2006.
E-Ref	erences
1	https://pharmafactz.com/introduction-to-medicinal-chemistry/
2	https://en.wikipedia.org/wiki/Medicinal_chemistry
3	http://library.umac.mo/ebooks/b28050332.pdf

HOLEN EMPONENTIEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.											
Programme	B.Sc	Programme Code		U	CE	I	Regulati	ons	20)18-2019		
Department	Chemistry Semester											
Course Code	(Course Name	Pe per	eriod We	s ek	Credit	Max	imu	m N	/larks		
			L	Т	Р	С	CA	ES	SE	Total		
18U6CHS02	SKILL BASED POLYMER C	ELECTIVE COURSE - II HEMISTRY	2			2	25	7:	5	100		
Course Objectives	 To impart t properties and To learn be particular emp To impart th 	 To impart the students the knowledge of polymer materials, their formation mechanisms, properties and uses. To learn basic concepts of polymer chain architecture, structure and morphology, with particular emphasis on the relationship between chemical structure (chain architecture). To impart the students the understanding of biological applications of polymer materials. 										
POs		PROGRAMME OUTCOME										
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.											
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.											
PO 3	Capability to a evidence, arguing	apply analytic thought to ments, claims, beliefs on th	a bo e bas	ody o sis of	of k em	nowled	ge; analy: evidence.	se a	nd	evaluate		
PO 4	Apply one's lea	arning to real life situations										
PO 5	Analyse and sy	nthesise data from a variet	y of s	sourc	es.							
PO 6	Establish hypo report the resul	theses, predict cause-and-e ts of an experiment or inve	ffect stiga	relat tion.	ion	ships; al	oility to p	lan,	exe	cute and		
PO 7	Ability to work coordinated eff	c effectively and respectful fort on the part of a group.	ly wi	th di	ver	se teams	; facilitat	e co	ope	rative or		
PO 8	Ability to analy	yse, interpret and draw con-	clusi	ons f	ron	n quantit	ative/qual	litati	ve o	lata.		
PO 9	Critical sensibi and society.	lity to lived experiences, w	vith s	elf a	wai	reness an	nd reflexi	vity	of l	ooth self		
PO 10	Capability to u evaluate, and u	se ICT in a variety of lear se a variety of relevant info	ning orma	situa tion s	atio soui	ns, dem ce.	onstrate a	bilit	y to	access,		
PO 11	Ability to work	independently, identify ap	prop	riate	res	ources r	equired fo	or a p	oroj	ect.		
PO 12	Possess know	ledge of the values and	beli	efs	of	multiple	e cultures	s an	d a	ı global		
PO 13	Appreciating e and truthful act	nvironmental and sustainal ions in all aspects of work.	bility	' issu	es;	and ado	pting obj	ectiv	ve, ı	unbiased		
PO 14	Building a tea members.	nm who can help achieve	e the	visi	ion,	motiva	ting and	insp	oiri	ng team		
PO 15	Ability to acquire knowledge and skills.											

COs		COURSE OUTCOME														
CO 1	St	udents	will be	e able to	o gain l	knowle	edge al	oout th	e prope	erties a	nd class	sificatio	on of po	olymers	•	
CO 2	St	udents	will be	e able to	o prepa	re of p	olyme	r throu	gh diff	ferent to	echniqu	ies of p	olymer	ization		
CO 3	Str po	Students will be able to estimate the number- and weight-average molecular masses of polymers given the degree of polymerization and mass fraction of chains present.														
CO 4	St	udents	will de	evelop t	heir kr	nowled	ge tow	vards d	egrada	tion of	polyme	erizatio	n.			
CO 5	St pr	Students will enhance their knowledge towards the commercially important polymers, their preparation and applications.														
Pre-requisites																
					KN	OWL	EDGE	LEVE	LS							
	1.Ren	nember	ing, 2.	Underst	anding	g, 3.Apj	plying,	4.Anal	yzing,	5.Evalu	ating, 6	5.Synthe	esizing			
		(3/2/1	indica	ates the	C) strengt	O / PO th of co	/ KL N rrelati	Aappin on, 3-st	g trong, 2	2-mediu	ım. 1-w	eak)				
Cos	5	(]	KLs				POs	3)	KL	.s		
									PO	1			4			
СО	1			3 PO 1 3 PO 2						2	2					
PO 3 1																
CO 2					2				PO 4	4 5		2 1 3 6 4 2				
			2				PO (5			e molecular masses of as present. ization. aportant polymers, their Synthesizing k) KLs 4 2 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 5 2 4 4 2 5 5 2 4 4 2 5 5 2 4 4 2 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 2 4 4 5 5 5 5 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5					
							PO '	7			3 6 4 2 5					
СО	3				4				PO	8			KLs 4 2 1 3 6 4 2 5 2 4 2 4 2 5 2 4 1 3 4 2 2 2 2 2			
									PO	9			ak) KLs 4 2 1 3 6 4 2 5 2 5 2 4 1 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2			
	4								PO 1	0			4			
	4				1				PO 1	1			1			
									PO 1 PO 1	3			3			
СО	5				3				PO 1	4			e molecular masses of ns present. ization. nportant polymers, their Synthesizing Ak) KLs 4 2 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 4 1 3 6 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 1 3 6 4 4 2 5 5 2 4 4 1 3 6 4 4 2 5 5 2 4 4 1 3 6 4 4 2 5 5 2 4 4 1 3 6 4 4 2 5 5 2 4 4 1 3 4 2 2 4 4 1 3 1 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2			
					-				PO 1	5			cation of polymers. of polymerization. molecular masses of present. ation. portant polymers, their mthesizing () KLs 4 2 1 3 6 4 2 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 1 3 6 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 2 5 2 4 4 5 2 4 5 2 4 4 2 5 2 4 4 5 2 4 5 2 2 4 5 5 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 2 2 4 5 5 5 5 2 2 4 5 5 5 2 2 4 5 5 5 5 5 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5			
			•			CO/I	PO Ma	pping			•					
	1	(3/2/1	lindica	ates the	strengt	th of co	rrelati	on, 3-si	trong, 2	2-mediu	ım, 1-w	eak)				
COs						Pr	ogram	me Ou	tcome	(POs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	2	2	1	3	1	2	2	1	2	2	1	3	2	2	2	
CO2	1	3	2	2	1	1	1	1	3	1	2	2	1	3	1	
CO3	3	1	1	2	1	3	1	2	1	3	1	2	3	1	3	
CO4	1	2	3	1	1	1	2	1	2	1	3	1	1	2	1	
CO5	2	2	1	3	1	2	2	1	2	2	1	3	2	2	2	

Course Assessment Methods

Direct

- 1. Continuous Assessment Test I, II & Model
- Assignment
 End Semester Examinations

Indirect

1. Course End Delivery

Content of the Syllabus									
	Polymers Classification and properties	Periods	6						
Unit - I	 Monomers, Oligomers and Polymers - Degree of polymerization and its significance- Funtionality - Tacticity of Polymers (Isotactic, Syndiotactic and Atactic). Nomenclature of polymers- Homopolymers and Co-polymers. Classification of polymers - Natural, Synthetic, Organic and Inorganic Polymers - linear, cross linked and network. Physical properties of polymers - Elasticity, Tensile strength, Glass Transition Temperature. 								
	Techniques and Mechanism of Polymerisation	Periods	6						
Unit - II	General methods of preparation of polymer-Bulk, Solution polymerization. Mechanism of polymerization- Cationic, Coordination polymerization. Types of Polymerization - C Polymerization. Plastics-Thermoplastic and Thermosetting F	, Suspension a anionic, free Condensation a Plastics.	nd Emulsion radical and and Addition						
	Molecular weight and its Determination	Periods	6						
Unit - III	Molecular weight and its determination: concept of Molecular weight-Number average Molecular weight-Weight average molecular weight. Methods of determining molecular weight- Osmometry, Viscometry and sedimentation, Gel permeation Chromatography.								
	Polymer degradation and Compounding materials of polymers	Periods	6						
Unit - IV	Polymer degradation-Definition- Types of degradation- Thermal degradation - Mechanical degradation, Hydrolytic degradation, Photodegradation and Biodegradation. Compounding Materials of Polymers – Plastics – Fillers – Plasticizers – Colorants – Antioxidants - Stabilizers and Lubricants and Differences.								
	Industrially important polymers	Periods	6						
Unit - VIndividual Polymers-Polyacrylates, Polystyrene, Polyethylene, Polyvinylchlor Polyester, Polyamides- (Nylon-6, Nylon 6,6), Kevlar-Preparation and Uses. Type Rubber - Natural Rubber and synthetic process - Vulcanization. Fibre Reinfor Plastic (FRP) - Foamed Plastics-Conducting Polymers, polymers in biolog application.									
	Total Periods		30						

Text l	Text Books								
1	V.R. Gowarikar., N.V. Viswanathan: Polymer Science-Wiley Eastern limited, New Delhi. 1986.								
2	F.W. Billmeyer, Wiley, Textbook of Polymer Science, 1984.								
2	M.S.Bhatnagar, A Text Book Polymers, S.Chand & Company Ltd, Ram Nagar, New Delhi.								
5	Volume-II-2004.								

Refer	References						
E-Ref	E-References						
1	https://byjus.com/jee/polymers/						
2	https://www.intechopen.com/books/fiber-reinforced-polymers-the-technology-applied-for-concrete-repai						
	r/introduction-of-fibre-reinforced-polymers-polymers-and-composites-concepts-properties-and-processes						

HOREN EMPONENTIENT	VIVEKANAN	EN	IVRheinland CERTIFIED	ISO 9001:2008							
Programme	B.Sc	Programme Code			UCH	I	Regulati	ons	2018-	2019	
Department	Chemistry Semester										
Course Code		Course Name	P pe	eric r W	ods eek	Credit	Max	kimum	m Marks		
			L	Т	Р	С	CA	ESE	T	'otal	
18U6CHCP03	CORE PRAC PHYSICAL CI	TICAL - III: HEMISTRY PRACTICAL			3	4	40	60]	100	
Course Objectives	 To verify th To determine meter, potention 	 To verify the some important principles in physical chemistry. To determine various physical properties using simple instruments like conductivity meter, potentiometer, etc. 									
POs		PROGRAMME OUTCOME									
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.										
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.										
PO 3	Capability to evidence, argu	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.								luate	
PO 4	Apply one's le	arning to real life situation	ns.								
PO 5	Analyse and sy	ynthesise data from a varie	ty of	sou	rces.						
PO 6	Establish hypo report the resu	otheses, predict cause-and- lts of an experiment or inv	effect estiga	rel tio	ation 1.	ships; al	bility to p	lan, ex	ecute	and	
PO 7	Ability to wor coordinated ef	k effectively and respectful fort on the part of a group.	lly w	ith (diver	se teams	; facilitat	e coop	oerativ	ve or	
PO 8	Ability to anal	yse, interpret and draw con	nclusi	ons	fron	n quantit	ative/qua	litativ	e data	•	
PO 9	Critical sensib and society.	ility to lived experiences,	with s	self	awa	reness a	nd reflexi	vity o	f both	ı self	
PO 10	Capability to u evaluate, and u	use ICT in a variety of leasure a variety of relevant in	arning forma	sit tior	uatio 1 sou	ns, dem rce.	onstrate a	ıbility	to ac	cess,	
PO 11	Ability to wor	k independently, identify a	pprop	oria	te res	ources r	equired fo	or a pr	oject.		
PO 12	Possess know perspective.	ledge of the values and	d bel	iefs	of	multiple	e cultures	s and	a gl	lobal	
PO 13	Appreciating e and truthful ac	environmental and sustain tions in all aspects of world	ability <.	iss is	sues;	and ado	pting obj	ective	, unbi	iased	
PO 14	Building a tem members.	am who can help achiev	ve the	e vi	sion	, motiva	ting and	inspi	ring 1	team	
PO 15	Ability to acqu	Ability to acquire knowledge and skills.									

COs	COURSE OUTCOME
CO 1	To develop skills in doing experiments in kinetics, Potentiometry and phase rule.
CO 2	Students will gain an understanding of how to keep records of instruments, parameters.
CO 3	Students will gain experimental observations.
CO 4	Students will get various physical properties using simple instruments.
CO 5	Enable the students to work effectively as a member of a team and to Communicate productively with lab mates, teaching assistant and instructor.
Pre-requisites	

				K	NOW	LEDG	E LEV	ELS								
1.Remembering, 2.Understanding, 3.Applying, 4.Analyzing, 5.Evaluating, 6.Synthesizing																
CO / PO / KL Mapping																
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)																
Cos]	KLs				POs	5			KLs			
CO 1									PO	1			2			
COT					2			PO 2					3			
									PO	3		KLs 2 3 4 5 1 6 2 3 2 3 2 3 2 3 2 3 3				
COD									PO	4			5			
02					4				PO :	5			1	ing KLs 2 3 4 5 1 6 2 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 1 3 2 4 3 2 4 3 2 1 3 1 3 1 3 2 1 3 2 1 2 1 2 1 2 1 2 1 2 1 2 <		
									PO	5			zing KLs 2 3 4 5 1 6 2 3 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 4 3 2 1 6 2 3 3 3 2 4 4 3 2 1 6 2 3 3 3 2 4 4 3 1 1 1 3 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2			
CO 2								PO '	7			2				
0.5	005			1				PO 8				3				
									PO)		2				
COA				1				PO I	0			2				
0.04					I				PO 10 2 PO 11 4 PO 12 3							
									PO I	2			5 1 6 2 3 2 4 3 2 4 3 2 4 1			
CO 5					2				PO I	3			2			
					3			PO 14				4				
					CO	/ PO M	annin	a	101	5			1			
	(3/2/1	l indic	ates th	e stren	gth of o	correla	tion, 3	s 8-stron	g, 2-m	edium,	1-weal	x)				
COs						Progra	amme	Outco	me (PC)s)						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15	
CO1	3	2	1	1	2	1	1	2	2	3	1	2	3	1	2	
CO2	1	2	3	2	1	1	1	2	2	1	3	2	1	3	1	
CO3	2	1	1	1	3	1	2	1	1	2	1	1	2	1	3	
CO4	2	1	1	1	3	1	2	1	1	2	1	1	2	1	3	
CO5	2	3	2	1	1	1	2	3	3	2	2	3	2	2	1	

Course Assessment Methods							
Direct							
 Continuou Assignmer End Semes 	s Assessment Test I, II & Model ht ster Examinations						
Indirect							
1. Course En	d Delivery						
	Content of the Syllabus						
	Kinetics	Periods	12				
Unit - I	1. Rate constant determination for first order reaction-Hydr medium (Ethyl acetate or Methyl acetate). 2. Rate constant order reaction-Reaction between Potassium persulphate and	rolysis of an es at determination Potassium iodio	ster in acidic n for second de.				
	Conductivity Experiments -I	Periods	12				
Unit - II	Unit - II1. Determination of cell constant.2. Determination of dissociation constant for weak acid (Acetic acid).3. Determination of Equivalent conductance at infinite dilution for strong electrolyte (KCl).						
	Conductivity Experiments-II	Periods	12				
Unit - III	1.Conductometric titration-Strong acid vs Strong base, 2.We 3. Precipitation titration – KCl vs AgNO ₃	ak acid vs Stro	ng base.				
	Potentiometry	Periods	12				
Unit - IV	 Potentiometric titration- Strong acid vs Strong base, 2. We Precipitation titration – KCl vs AgNO₃ 	eak acid vs Stro	ong base.				
	Heterogeneous Equilibrium	Periods	12				
 Unit - V 1. Binary system-naphthalene/biphenyl, 2. Phenol/water system-determination of CST and study of effect of impurity (NaCl) on CST. 3. Determination of transition temperature for hydrated salts-sodium thiosulphate, sodium acetate, strontium chloride, manganous chloride. 4. Determination of K_f of a solvent by Rast method. 							
	Total Periods		60				

Text	Text Books							
1	Basic Principle of Practical chemistry - V. Venkateswaran, R. Veeraswamy and A.R. Kulandaivelu, S. Chand and Sons, New Delhi, 2004.							
Refe	rences							
1	Experimental Physical Chemistry, V.D. Athawale, Parulmathur, New age International publishers, 2001.							
E-Re	ferences							
1	https://pubs.acs.org/doi/abs/10.1021/ed013p250.2							
2	https://www.elsevier.com/books/experiments-in-physical-chemistry/wilson/ 978-0-08-023798-5							

HONEN ENDORERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.											
Programme	B.Sc	B.Sc Programme Code UCH Regulations										
Department	Chemistry Semester											
Course Code		Course Name	Pe per	rioo We	ds eek	Credit	Max	imur	m Marks			
			L	T	Р	С	CA	ES	E	Total		
18U6CHCP04	CORE PRACT ORGANIC AN AND GRAVIM	ICAL- IV ALYSIS, PREPARATIONS ETRIC ESTIMATIONS			5	5	25	75	5	100		
Course Objectives	 The stude gravimetric m The studen simple organi 	 The students will get training in the quantitative analysis of metal ions using gravimetric method. The students will get training for systematic qualitative analysis and preparation of simple organic compounds. 										
POs		PROGRAMME OUTCOME										
PO 1	Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines.											
PO 2	Demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups.											
PO 3	Capability to a evidence, arguing	Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence.										
PO 4	Apply one's lea	arning to real life situations.										
PO 5	Analyse and sy	nthesise data from a variety	of sc	ourc	es.							
PO 6	Establish hypot report the resul	heses, predict cause-and-eff ts of an experiment or invest	èct r tigati	elat on.	ion	ships; al	bility to p	lan, e	exe	cute and		
PO 7	Ability to work coordinated eff	effectively and respectfully ort on the part of a group.	v with	n di	ver	se teams	s; facilitat	e coo	ope	rative or		
PO 8	Ability to analy	vse, interpret and draw concl	usio	ns f	ron	n quantit	ative/qua	litativ	ve o	lata.		
PO 9	Critical sensibi and society.	lity to lived experiences, wi	th se	lf a	wai	reness a	nd reflexi	vity	of l	ooth self		
PO 10	Capability to u evaluate, and u	se ICT in a variety of learn se a variety of relevant infor	ing s mati	itua on s	atio soui	ns, dem rce.	onstrate a	bility	y to	access,		
PO 11	Ability to work	independently, identify app	ropri	iate	res	ources r	equired for	or a p	oroj	ect.		
PO 12	Possess knowl perspective.	edge of the values and	belie	fs	of	multiple	e cultures	s and	d a	ı global		
PO 13	Appreciating each and truthful act	nvironmental and sustainabi ions in all aspects of work.	lity i	ssu	es;	and add	opting obj	ectiv	e, 1	inbiased		
PO 14	Building a tea members.	m who can help achieve	the	visi	ion,	motiva	ating and	insp	oirii	ng team		
PO 15	Ability to acquire knowledge and skills.											

COs	COURSE OUTCOME
CO 1	Students will learn to predict the outcome of organic reactions.
CO 2	To understanding of the general reactivity of functional groups and mechanism.
CO 3	Enable the students to work effectively as a member of a team.
CO 4	To Communicate productively with lab mates, teaching assistant and instructor.
CO 5	Students will learn to maintain a detailed scientific notebook.
Pre-requisites	

					KN	OWL	EDGE	LEVE	LS						
	1.Ren	nember	ring, 2.	Underst	tanding	g, 3.Apj	plying,	4.Anal	yzing,	5.Evalu	ating, (5.Synthe	esizing		
					С	0 / PO	/ KL N	Aappin	g						
		(3/2/1	l indica	ates the	strengt	th of co	rrelati	on, 3-st	trong, 2	2-mediu	ım, 1-w	eak)			
Cos			KLs					POs				KLs			
CO 1			2					PO 1				3			
								PO 2				1			
								PO 3				4			
CO 2								PO 4				2			
				1				PO 5				6			
								PO 6				2			
CO 3							PO 7				3				
				3				PO 8				4			
								PO 9				2			
CO 4 CO 5			5					PO 11				2			
				5				PO 12				<u> </u>			
								PO 13				3			
				4				PO 14				4			
								PO 15				2			
						CO/1	PO Ma	pping							
		(3/2/2	l indica	ates the	streng	th of co	orrelati	on, 3-st	trong, 2	2-mediu	ım, 1-w	eak)			
		Programme Outcome (POs)													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	2	1	1	3	1	1	1	1	3	2	1	1	2	2	1
CO2	2	3	1	1	2	3	1	3	1	2	2	2	2	2	1
CO3	3	2	1	2	1	2	1	2	2	3	1	1	3	3	1
CO4	1	2	2	1	3	2	1	2	1	1	3	3	1	1	2
CO5	1	1	3	1	2	1	2	1	1	1	2	2	1	1	3

Course Assessment Methods								
Direct								
1. Continuous Assessment Test I, II & Model								
2. Assignme	nt							
3. End Seme	ster Examinations							
Indirect								
1. Course En	ld Delivery							
Content of the Syllabus								
	Organic Qualitative analysis-I	Periods	15					
Unit – I	Analysis of Organic Compounds Characterization of organic compounds by their functional group and confirmation by preparation of derivatives. The following functional groups may be studies: Carboxylic Acids (mono and di), Phenols, Aromatic Esters, and Aldehydes.							
	Organic Qualitative analysis-II	Periods	15					
Unit – IIAnalysis of Organic Compounds Characterization of organic compounds by their functional group and confirmation by preparation of derivatives. Ketones, Monosaccharides, Amides, Diamides, Aromatic primary amines and Nitro compounds.								
Unit – III	Organic Preparations - I	Periods	15					
	Preparations involve the following reactions: 1. Oxidation - Preparation of Benzoic acid from Benzaldehyde 2. Hydrolysis - Preparation of Methyl salicylate from Salicylic acid 3. Nitration- Preparation of p - Nitroacetanilide from Acetanilide.							
	Organic Preparations - II	Periods	15					
Unit – IV	4. Bromination - Preparation of p - Bromoacetanilide from Acetanilide 5. Bromination - Preparation of sym -Tribromophenol from Phenol 6. Benzoylation - Preparation of Benzanilide from aniline.							
	Gravimetric Estimations	Periods	15					
Unit – V	1. Estimation of Nickel as Nickel DMG Complex 2. Estimation Barium as Barium Chromate 3. Estimation of Lead as Lead Chromate							
	Total Periods		75					

Text Books						
1	Dr. N.S Gnanapragasam, Organic chemistry Lab manual.					
2	V. Venkateswaran, R.Veeraswamy and A.R. Kulandaivelu, Basic Principle of Practical chemistry, S. Chand and Sons, New Delhi, 2004.					
Refe	rences					
1	R.K. Bansal, Laboratory Manual of Organic chemistry, 3rd Edition, New Age Internal Publication.					
2	B.S. Furniss, A.J. Hannaford, P.W.D Smith and A.R. Tatchell, Vogel's Practical Organic chemistry, 5th					
	Edition, ELBS (1989).					
E-References						
1	https://www.toppr.com/guides/chemistry/organic-chemistry/qualitative-analysisof-organic-compounds/					
2	https://www.csub.edu/chemistry/organic/manual/Lab14_QualitativeAnalysis.pdf					
3	https://chem.libretexts.org/Ancillary_Materials/Laboratory_Experiments/Wet_Lab _Experiments/General_ Chemistry_Labs/Online_Chemistry_Lab_Manual/Chem_11_/07%3A_Gravimetric_Analysis_ (Experiment)					